首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spinach plastocyanin was converted into the apoprotein. CuSO4 and oxidized Cu(II)- thionein reacted with the apoprotein to Cu(II) plastocyanin. Cu(I) transfer from Cu(I)0-thionein was only 15%. The structural analogue of the copper thiolate chromophore [Cu(I)(thiourea)3]Cl as well as [Cu(CH3CN)4]ClO4 successfully formed the Cu(I)- holoprotein. Characteristic circular dichroism bands at θ284 (?5300 deg·cm2·dmol?1 and θ310 (+3300 deg·cm2·dmol?1) were seen. Upon oxidation with ferricyanide and dialysis against phosphate buffer the correct Cu(II) binding into the active centre of Cu(II) plastocyanin was confirmed by EPR-measurements. The use of [Cu(I)(thiourea)3] Cl as a convenient Cu(I) source for reconstitution studies on copper proteins is highly recommended.  相似文献   

3.
A recent study shows that a short isoform of a mammalian nuclear lamin is important for homologous chromosome interactions during meiotic prophase in mice.Meiosis is the specialized cell division process required for sexual reproduction. As cells enter meiotic prophase, a relatively long period preceding the two chromosome divisions, nuclei and chromosomes undergo remodeling to promote interactions between homologous chromosomes. Each chromosome must find and identify its unique partner within the volume of the nucleus, a process that obviously involves large-scale chromosome movements.Over 100 years ago, cytological analysis of meiotic cells revealed a unique chromosome configuration termed the meiotic ''bouquet'', in which chromosome ends seem to be attached to the nuclear periphery, frequently in a tight cluster. The presence of the bouquet was found to coincide with the stage during which homologous chromosomes undergo pairing and synapsis. This was the first indication that interactions between the chromosomes and the nuclear envelope might be important for meiotic pairing. More recent analysis in diverse model systems has revealed that the bouquet is a consequence of interactions between chromosomes and cytoskeletal elements - microtubules or actin cables - via a protein bridge that spans the nuclear envelope. A study recently published in PLOS Genetics [1] has shed further light on the role of the nuclear lamina in meiotic progression by studying the role of a meiosis-specific isoform of a nuclear lamin protein.In metazoans the nuclear envelope is fortified by the nuclear lamina, a meshwork of intermediate filament proteins (lamins) and associated proteins that underlies the inner nuclear membrane. The lamina confers structural rigidity to nuclei and also interacts with a wide variety of nucleoplasmic, transmembrane and chromosome-associated proteins. The composition of the lamina in metazoans shows tissue-specific variability and developmental regulation. Most differentiated mammalian cells express both A-type lamins (lamins A and C, which are generated by alternative splicing of the LMNA gene) and B-type lamins (encoded by two different genes), whereas some invertebrates express only a single lamin protein. Stem cells typically lack A-type lamins, which are also dispensable for early development in mice.Among the nuclear envelope components that interact with lamins are LINC (linker of nucleoskeleton and cytoskeleton) complexes. These versatile networks involve a pair of SUN/KASH proteins that bridge both membranes of the nuclear envelope. SUN domain proteins traverse the inner membrane, with their amino termini projecting into the nucleus and their SUN domains in the lumen between the two membranes. Their partners have membrane-spanning regions adjacent to their carboxy-terminal KASH domains, short peptides that bind to the SUN domains. Using a variety of interaction modules, LINC complexes create connections between nuclear structures such as the lamina or chromosomes and cytoskeletal elements such as actin filaments or microtubules. Throughout the eukaryotes, they have essential roles in diverse processes, including the positioning and migration of nuclei within cells and anchorage of centrosomes to the nuclear envelope. During meiosis, specific LINC complexes are recruited to interact with chromosomes through the expression of meiosis-specific proteins that bind to telomeres or, less frequently, to other specialized loci [2]. These connections, probably in conjunction with meiosis-specific modifications to the cytoskeleton and motor proteins, lead to large-scale chromosome motions that facilitate homologous chromosome pairing. These movements involve dramatic motion of the LINC proteins within the nuclear membrane, sometimes involving movements of up to several micrometers that occur within a few seconds [3]. This stands in sharp contrast to the behavior of some of the same protein complexes in somatic or premeiotic cells, in which they show highly constrained motion and minimal turnover [3].In the new PLOS Genetics study [1], groups led by Manfred Alsheimer and Ricardo Benavente, both of the University of Würzburg, have now engineered a disruption of an exon in the mouse LMNA gene that is specific to the meiotic isoform lamin C2 to generate C2-deficient mice (C2-/- mice). These collaborators have previously provided important insights into the regulation and functions of cell-type specific lamin isoforms, particularly during meiosis. Using antibodies, they characterized the lamin isoforms present in rat spermatocytes [4]. Immunolocalization revealed that a truncated isoform of lamin C (lamin C2) was localized in a patchy pattern along the nuclear envelope, along with a short B-type lamin (lamin B3) [4]. Because these short isoforms lack domains implicated in interactions between lamin subunits, they and others proposed that these proteins might form a more flexible network. This idea was supported by experiments in which meiosis-specific lamin C2 was ectopically expressed in fibroblasts and found to be more mobile within the nuclear envelope than full-length lamin C [5]. Expression of lamin C2 also resulted in aberrant localization of Sun1 in these cells. The collaborators also demonstrated that spermatogenesis was disrupted in Lmna-/- mice, although oocyte meiosis was not obviously perturbed [6]. Although defects in meiosis-specific processes were observed in the knockout mice, it was not possible to rule out an indirect effect of lamin depletion in somatic cells on meiosis in spermatocytes, prior to the new study.An important feature of the new research [1] is that the C2-/- mice show normal expression of all other A-type lamins. The C2-/- males recapitulate the meiotic failure seen in Lmna-/- mice. Nevertheless, their chromosomes frequently fail to synapse and they engage in heterologous associations or show aberrant telomere-telomere interactions; all of these defects are rare in wild-type spermatocytes. As a result of extensive apoptosis and failure of sperm maturation, the males are completely infertile. However, females are fertile, despite some evidence for pairing defects in C2-/- oocytes.These sex-specific differences in the effects of lamin C2 loss are somewhat surprising. They could in part reflect differential implementation of meiotic checkpoints, which cull defective spermatocytes more ruthlessly than oocytes [7]. However, analysis of homologous pairing and synapsis in the C2-/- mutant mice also revealed more severe defects in males. Both male and female mice lacking Sun1 protein are completely sterile and show synaptic failure during meiotic prophase [8]. This suggests that LINC-mediated chromosome dynamics are essential for homolog interactions during meiosis in both sexes. The milder defects caused by loss of lamin C2 in both male and female meiosis suggest that it has a less direct role in mediating chromosome movement than Sun1. This is consistent with the idea that expression of short lamin isoforms during meiosis acts primarily to increase the mobility of proteins within the nuclear envelope, relative to somatic cells. It seems likely that the dynamics of pairing, synapsis and recombination differ dramatically between spermatocytes, which are produced continually during the adult life of the male, and oocytes, which undergo meiotic prophase during fetal development. Such differences might render male meiosis more sensitive to changes in nuclear envelope organization or dynamics.The modifications made to the mouse nuclear envelope during meiosis are likely to be conserved in concept, if not in detail, in other taxa. As mentioned above, the isoforms and expression patterns of lamin proteins have diverged rapidly among the metazoa, as have the structures and functions of LINC complexes. For example, amphibians lack lamin C (and lamin C2), suggesting that its meiotic role in mammals is a recent innovation. Furthermore, the mouse Sun1 protein has a C2H2 zinc finger lacking in primate orthologs, which might suggest that it has evolved a distinct way to connect with meiotic chromosomes. It is thus not currently clear which aspects of meiotic lamina remodeling in mice can be extrapolated to other species.In Caenorhabditis elegans, meiotic chromosome dynamics are probably mediated by post-translational modification of the amino-terminal (nucleoplasmic) domain of sun-1 [9]. It is not yet known how this modification contributes to the function of the meiotic LINC complex. Direct observation has indicated that the motion of LINC complexes within the nuclear envelope becomes much less constrained as cells enter meiosis [3]. Phosphorylation of sun-1 may weaken interactions between the LINC complexes and the lamina to increase their mobility within the nuclear envelope, and/or promote interactions between LINC complexes to create high load-bearing aggregates of these proteins necessary to drive chromosome movement. It is not currently known whether the lamina itself is modified in C. elegans meiotic nuclei, but it is easy to imagine that phosphorylation could also be used to tweak protein-protein interactions within the lamina to optimize its properties during meiosis and other specialized cellular processes. It is likely that metazoans have evolved a wide range of mechanisms to modify their nuclear envelopes to meet the special demands of meiotic prophase.Homologous chromosome pairing remains one of the most mysterious aspects of meiosis. This new work in mice [1] adds an important piece of the puzzle by illuminating how the nuclear lamina can be modified to facilitate meiotic chromosome dynamics. To understand this process will clearly require looking beyond the chromosomes, and even beyond the nucleus, to the cellular networks connected by LINC complexes.  相似文献   

4.
5.
The association constants (K) of nucleic acid monomers with a series of water-soluble bis-porphyrins (bisMC1, bisMC3, bisMC5, bisMC7, and bisMC11) in which two porphyrin units were linked by a methylene chain of various lengths were estimated spectrophotometrically. Among the bis-porphyrins, the K values are similar for each nucleic acid monomer, indicating that the bridging chain length does not affect the association of the bis-porphyrins with the nucleic acid monomers. The melting curves of poly(dA)-poly(dT) in the presence of bisMC3 or bisMC5 were found to be biphasic, suggesting that bisMC3 and bisMC5 are bound to poly(dA)-poly(dT) with a binding mode different from the groove binding exhibited by the corresponding porphyrin monomers. A negative-induced CD peak in the Soret region of bisMC3 and bisMC5 with poly(dA)-poly(dT) is observed and the visible spectral changes of bisMC3 and bisMC5 upon addition of poly(dA)-poly(dT) are accompanied by a large red shift of the Soret band (bisMC3: 21 nm, bisMC5: 23 nm) with substantial hypochromicity (bisMC3: 49%, bisMC5: 40%). Therefore, it is reasonable to conclude that both of the porphyrin units of bisMC3 and bisMC5 intercalate into poly(dA)-poly(dT). In contrast to poly(dA)-poly(dT), the melting curves of poly(dA·dT)2 in the presence of the bis-porphyrins did not show such biphasic behavior. Together with the CD and visible absorption data, it is certain that these bis-porphyrins do not intercalate into poly(dA·dT)2.  相似文献   

6.
Glucoamylase, invertase, and cellulase were entrapped within poly(vinyl alcohol) (PVA) membrane cross-linked by means of irradiation of ultraviolet light. The conditions for immobilization of glucoamylase were examined with respect to enzyme concentration in PVA, sensitizer (sodium benzoate) concentration in PVA, irradiation time, and membrane thickness. Various characteristics of immobilized glucoamylase were evaluated. Among them, the pH activity curve for the immobilized enzyme was superior to that for the native one, and thermal stability was improved by immobilization with bovine albumin. The apparent K(m) was larger for immobilized glucoamylase than for the native one, while V(max) was smaller for the immobilized enzyme. Also, the apparent K(m) appeared to be affected by the molecular size of the substrate. Further, immobilized invertase and cellulase showed good stabilities in repeating usage.  相似文献   

7.
Summary Data are presented which indicate that a cytoplasmic/genetic type male sterility has been induced into backcross progeny derived from intergeneric hybridization between Festuca pratensis (female parent) and Lolium perenne. Large numbers of male sterile genotypes have been obtained in all the backcross generations examined. The frequency and purity of maintainer genotypes is low and requires further breeding and selection. Analysis of data suggest that at least two loci are involved in fertility restoration. Conclusions regarding the genetic model are tentative and require further analyses.  相似文献   

8.
Eisenhauer BM  Hecht SM 《Biochemistry》2002,41(38):11472-11478
By employing a general biosynthetic method for the elaboration of proteins containing unnatural amino acid analogues, we incorporated (aminooxy)acetic acid into positions 10 and 27 of Escherichia coli dihydrofolate reductase. Introduction of the modified amino acid into DHFR was accomplished in an in vitro protein biosynthesizing system by readthrough of a nonsense (UAG) codon with a suppressor tRNA that had been activated with (aminooxy)acetic acid. Incorporation of the amino acid proceeded with reasonable efficiency at codon position 10 but less well at position 27. (Aminooxy)acetic acid was also incorporated into position 72 of DNA polymerase beta. Peptides containing (aminooxy)acetic acid have been shown to adopt a preferred conformation involving an eight-membered ring that resembles a gamma-turn. Accordingly, the present study may facilitate the elaboration of proteins containing conformationally biased peptidomimetic motifs at predetermined sites. The present results further extend the examples of ribosomally mediated formation of peptide bond analogues of altered connectivity and provide a conformationally biased linkage at a predetermined site. It has also been shown that the elaborated protein can be cleaved chemically at the site containing the modified amino acid.  相似文献   

9.
Water is probably the most important molecule in biology. It solvates molecules, all biochemical reactions occur in it and it is a major driving force in protein folding. Phospholipid membranes separate different water environments, but connections do exist between the different compartments. The integral membrane proteins (IMPs) form these connections. In the case of ions, IMPs form the passageways that regulate ion movement across the membrane. Structural information from three ion distinct channels are examined to see how these channels first select for and then control the movement of their target ions. This review focuses on how these channels select for target ions and control their movement while taking into account and using different properties of water. This includes the use of hydrophobic gates, mimicking the water environment, and controlling ions indirectly by controlling water.  相似文献   

10.
The cyanelles of the glaucocystophyte alga Cyanophora paradoxa resemble endosymbiotic cyanobacteria in morphology, pigmentation and, especially, in the presence of a peptidoglycan wall situated between the inner and outer envelope membranes. However, it is now clear that cyanelles in fact are primitive plastids. Phylogenetic analyses of plastid, nuclear and mitochondrial genes support a single primary endosymbiotic event. In this scenario cyanelles and all other plastid types are derived from an ancestral photosynthetic organelle combining the high plastid gene content of the Porphyra purpurea rhodoplast and the peptidoglycan wall of glaucocystophyte cyanelles. This means that the import apparatus of all primary plastids should be homologous. Indeed, heterologous in vitro import can now be shown in both directions, provided a phenylalanine residue essential for cyanelle import is engineered into the N-terminal part of chloroplast transit peptides. The cyanelle and likely also the rhodoplast import apparatus can be envisaged as prototypes with a single receptor showing this requirement for N-terminal phenylalanine. In chloroplasts, multiple receptors with overlapping and less stringent specificities have evolved explaining the efficient heterologous import of native precursors from C. paradoxa. With respect to conservative sorting in cyanelles, both the Sec and Tat pathways could be demonstrated. Another cyanobacterial feature, the dual location of the Sec translocase in thylakoid and inner envelope membranes, is also unique to cyanelles. For the first time, protease protection of internalized lumenal proteins could be shown for cyanobacteria-like, phycobilisome-bearing thylakoid membranes after import into isolated cyanelles.  相似文献   

11.
Water is probably the most important molecule in biology. It solvates molecules, all biochemical reactions occur in it and it is a major driving force in protein folding. Phospholipid membranes separate different water environments, but connections do exist between the different compartments. The integral membrane proteins (IMPs) form these connections. In the case of ions, IMPs form the passageways that regulate ion movement across the membrane. Structural information from three ion distinct channels are examined to see how these channels first select for and then control the movement of their target ions. This review focuses on how these channels select for target ions and control their movement while taking into account and using different properties of water. This includes the use of hydrophobic gates, mimicking the water environment, and controlling ions indirectly by controlling water.  相似文献   

12.
The cyanelles of the glaucocystophyte alga Cyanophora paradoxa resemble endosymbiotic cyanobacteria in morphology, pigmentation and, especially, in the presence of a peptidoglycan wall situated between the inner and outer envelope membranes. However, it is now clear that cyanelles in fact are primitive plastids. Phylogenetic analyses of plastid, nuclear and mitochondrial genes support a single primary endosymbiotic event. In this scenario cyanelles and all other plastid types are derived from an ancestral photosynthetic organelle combining the high plastid gene content of the Porphyra purpurea rhodoplast and the peptidoglycan wall of glaucocystophyte cyanelles. This means that the import apparatus of all primary plastids should be homologous. Indeed, heterologous in vitro import can now be shown in both directions, provided a phenylalanine residue essential for cyanelle import is engineered into the N-terminal part of chloroplast transit peptides. The cyanelle and likely also the rhodoplast import apparatus can be envisaged as prototypes with a single receptor showing this requirement for N-terminal phenylalanine. In chloroplasts, multiple receptors with overlapping and less stringent specificities have evolved explaining the efficient heterologous import of native precursors from C. paradoxa. With respect to conservative sorting in cyanelles, both the Sec and Tat pathways could be demonstrated. Another cyanobacterial feature, the dual location of the Sec translocase in thylakoid and inner envelope membranes, is also unique to cyanelles. For the first time, protease protection of internalized lumenal proteins could be shown for cyanobacteria-like, phycobilisome-bearing thylakoid membranes after import into isolated cyanelles.  相似文献   

13.
Journal of Ichthyology - The conditions for the reproduction of Pacific salmon of the Oncorhynchus genus in rivers flowing into Terpeniya Bay were assessed. The differences between the rivers of...  相似文献   

14.
Flux of SO(2) into Leaf Cells and Cellular Acidification by SO(2)   总被引:4,自引:0,他引:4       下载免费PDF全文
A comparison of fluxes of SO2 from the atmosphere into leaves with fluxes across biomembranes revealed that, apart from the cuticle, the main barrier to SO2 entry into leaves are the stomates. SO2 fluxes into leaves can be calculated with an accuracy sufficient for many purposes on the assumption that the intracellular SO2 concentration is zero. SO2 entering green leaf cells is trapped in the cytoplasm. In the light, the products formed in its reaction with water are processed particularly in the chloroplasts. Flux of SO2 to the acidic central vacuole of leaf cells is insignificant. Intracellular acidification of barley mesophyll protoplasts by SO2 was measured by the uptake of 14C-labeled 5,5-dimethyl-oxazolidine-2,4-dione. The measured acidification was similar to the acidification calculated from known buffer capacities and the rate of SO2 influx when the H+/SO2 ratio was assumed to be 2. A comparison of photosynthesis inhibition by SO2 with calculated acidification revealed different mechanisms of inhibition at low and at high concentrations of SO2. At very low concentrations, inhibition by SO2 was even smaller than expected from calculated acidification. The data suggest that, if acidification cannot be compensated by pH-stabilizing cellular mechanisms, it is a main factor of SO2 toxicity at low SO2 levels. At high levels of SO2, anion toxicity and/or radical formation during oxidation of SO2 to sulfate may play a large role in inhibition.  相似文献   

15.
16.
Plant mitochondrial genomes lack a number of tRNA genes and the corresponding tRNAs, which are nuclear-encoded, are imported from the cytosol. We show that specific import of tRNA(Gly) isoacceptors occurs in tobacco mitochondria: tRNA(Gly)(UCC) and tRNA(Gly)(CCC) are cytosolic and mitochondrial, while tRNA(Gly)(GCC) is found only in the cytosol. Exchange of sequences between tRNA(Gly)(UCC) and tRNA(Gly)(GCC) shows that the anticodon and D-domain are essential for tRNA(Gly)(UCC) import. However the reverse mutations in tRNA(Gly)(GCC) are not sufficient to promote its import into tobacco mitochondria.  相似文献   

17.
Aside from their importance to the survival and general welfare of mankind, agriculture and its related industries produce large quantities of feedstocks and coproducts that can be used as inexpensive substrates for fermentative processes. Successful adoption of these materials into commercial processes could further the realization of a biorefinery industry based on agriculturally derived feedstocks. One potential concept is the production of poly(hydroxyalkanoate) (PHA) polymers, a family of microbial biopolyesters with a myriad of possible monomeric compositions and performance properties. The economics for the fermentative production of PHA could benefit from the use of low-cost agricultural feedstocks and coproducts. This mini-review provides a brief survey of research performed in this area, with specific emphasis on studies describing the utilization of intact triacylglycerols (vegetable oils and animal fats), dairy whey, molasses, and meat-and-bone meal as substrates in the microbial synthesis of PHA polymers.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

18.
Abstract. 1. The post-emergence lateral migration of both sexes of eight stonefly species was examined in a dystrophic, fourth-order forest river in eastern Finland.
2. For this purpose, 7351 stonefly adults were collected with eighteen trunk funnels positioned in rows of six at distances of approximately 1, 15 and 60 m from the river. A further 1880 adults were also caught from the vegetation of the bank zone by sweep netting and with slit traps.
3. The species could be grouped into two types with respect to migration distance: Isoperla difformis, I.grammatica and Leuctra fusca tended to stay in the bank area, whereas Nemoura flexuosa, N.avicularis, Amphinemura borealis, L.hippopus and N.cinerea tended to disperse into the forest, so that the majority were found some distance away from the shore.
4. The males of the leuctrids, N.flexuosa and N.cinerea migrated farther than the females.
5. The sex ratio was significantly biased in all species except N.flexuosa. The isoperlids, leuctrids and A.borealis showed a significant predominance of females in the trunk funnel catches, but males were significantly dominant in N.avicularis and N.cinerea. The material caught by other methods reversed the ratio for I.difformis and N.avicularis. Comparison of the sex ratios of the species with other reports revealed marked variation and deviation from unity, much of which could be attributed to bias introduced by the sampling methods.
6. Lateral migration seems to be the first phase in the colonization cycle, although the latter as such was not studied here. Adults of Euholognatha species migrate farther than those of Systellognatha, a difference of which may be due to their ability to feed as adults.  相似文献   

19.
The immigration of spiders (Araneida) into a new polder   总被引:1,自引:0,他引:1  
Abstract. (1) The immigration of spiders into the Lauwerszeepolder (constructed in 1969) was studied during four years in four areas. The spider fauna was sampled weekly and 65 000 specimens of eighty-four species were caught using strip traps, window traps, simple pitfall traps and fences.
(2) About sixty species from all kinds of habitats were caught rarely; nineteen species were caught in numbers that suggest that they had established populations in the study areas.
(3) The four successful pioneer species, plus two marsh-dwelling species, were most abundant during 1969 and 1970. The 1971 catch was dominated by species from saline habitats; they became less abundant in 1972 when species from non-saline habitats increased. Only halotolerant species established populations.
(4) No evidence was found that dispersing spiders select certain areas. The differences between the spider fauna of the differennt study areas arise from degrees of success in colonization by immigrants. Pioneer species are least influenced by the abiotic environment.
(5) A greater aeronautic dispersal power is found in species inhabiting unstable habitats than in species from stable habitats.
(6) Aeronautic activity in adult linyphiids (s.l.) is not restricted to a special season, but is related to definite phases of the phenology.
(7) Male and female erigonids are equally active in aeronautic behaviour. In erigonids and linyphiids intense aeronautic activity coincides with great ground activity; on the ground males are more active than females.  相似文献   

20.
以3个水稻品种的成熟胚诱导的良好胚性愈伤组织为受体,以LycB为目的基因,应用根癌农杆菌介导法对水稻进行遗传转化,同时以抗性愈伤率为依据,对影响转化的几个因素进行优化研究。结果表明:预培养4d、侵染5~10min、农杆菌菌液浓度OD600值0.7~1.0、共培养2d有利于提高转化率。经潮霉素筛选获得的抗性植株经PCR和PCR-Southern分析鉴定,初步证明外源基因LycB已整合到水稻的基因组中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号