首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple mating by females is widely thought to encourage post-mating sexual selection and enhance female fitness. We show that whether polyandrous mating has these effects depends on two conditions. Condition 1 is the pattern of sperm utilization by females; specifically, whether, among females, male mating number, m (i.e. the number of times a male mates with one or more females) covaries with male offspring number, o. Polyandrous mating enhances sexual selection only when males who are successful at multiple mating also sire most or all of each of their mates'' offspring, i.e. only when Cov(m,o), is positive. Condition 2 is the pattern of female reproductive life-history; specifically, whether female mating number, m, covaries with female offspring number, o. Only semelparity does not erode sexual selection, whereas iteroparity (i.e. when Cov(m,o), is positive) always increases the variance in offspring numbers among females, which always decreases the intensity of sexual selection on males. To document the covariance between mating number and offspring number for each sex, it is necessary to assign progeny to all parents, as well as identify mating and non-mating individuals. To document significant fitness gains by females through iteroparity, it is necessary to determine the relative magnitudes of male as well as female contributions to the total variance in relative fitness. We show how such data can be collected, how often they are collected, and we explain the circumstances in which selection favouring multiple mating by females can be strong or weak.  相似文献   

2.
There is considerable disagreement over whether or not gaining viability benefits to offspring could be substantial enough to overcome the costs of female choosiness. A recent review suggested that the ''lek paradox'' might be resolved by large indirect benefits as indicated by highly heritable ornamental traits. We selected males of a wolf spider Hygrolycosa rubrofasciata in relation to their sexual signalling rate (audible drumming). The estimated correlated response in offspring viability was rather small (0.12 s.d.). However, it may be large enough if the costs of being choosy are small. In fact, females mate with better-than-average males just by responding passively to a random drumming signal, and the active choice by females seemed to increase this benefit only slightly. In many mating systems, females obtain better-than-average males as a consequence of intense male–male competition or because of the extraordinary variance in male signalling. The costs of any additional choice may be so minor that female choice for honestly signalling males may evolve even with minute benefits in offspring viability. This may be the general solution to the lek paradox, as most studies report no apparent fitness benefits. Publication bias favouring statistically significant results may have led to an overemphasis on the few studies with large effects.  相似文献   

3.
The differential allocation hypothesis predicts that reproductive investment will be influenced by mate attractiveness, given a cost to reproduction and a tradeoff between current and future reproduction. We tested the differential allocation hypothesis in the swordtail fish Xiphophorus multilineatus, where males have genetically influenced (patroclinous inheritance) alternative mating tactics (ARTs) maintained by a tradeoff between being more attractive to females (mature later as larger courting males) and a higher probability of reaching sexual maturity (mature earlier as smaller sneaker males). Males in X. multilineatus do not provide parental care or other resources to the offspring. Allelic variation and copy number of the Mc4R gene on the Y-chromosome influences the size differences between males, however there is no variation in this gene on the X-chromosome. Therefore, to determine if mothers invested more in offspring of the larger courter males, we examined age to sexual maturity for daughters. We confirmed a tradeoff between number of offspring and female offspring’s age to sexual maturity, corroborating that there is a cost to reproduction. In addition, the ART of their fathers significantly influenced the age at which daughters reached sexual maturity, suggesting increased maternal investment to daughters of courter males. The differential allocation we detected was influenced by how long the wild-caught mother had been in the laboratory, as there was a brood order by father genotype (ART) interaction. These results suggest that females can adjust their reproductive investment strategy, and that differential allocation is context specific. We hypothesize that one of two aspects of laboratory conditions produced this shift: increased female condition due to higher quality diet, and/or assessment of future mating opportunities due to isolation from males.  相似文献   

4.
Taxa in which males alone invest in postzygotic care of offspring are often considered good models for investigating the proffered relationships between sexual selection and mating systems. In the pycnogonid sea spider Pycnogonum stearnsi, males carry large egg masses on their bodies for several weeks, so this species is a plausible candidate for sex-role reversal (greater intensity of sexual selection on females than on males). Here, we couple a microsatellite-based assessment of the mating system in a natural population with formal quantitative measures of genetic fitness to investigate the direction of sexual selection in P. stearnsi. Both sexes proved to be highly polygamous and showed similar standardized variances in reproductive and mating successes. Moreover, the fertility (number of progeny) of males and females appeared to be equally and highly dependent on mate access, as shown by similar Bateman gradients for the two sexes. The absence of sex-role reversal in this population of P. stearnsi is probably attributable to the fact that males are not limited by brooding space but have evolved an ability to carry large numbers of progeny. Body length was not a good predictor of male mating or reproductive success, so the aim of future studies should be to determine what traits are the targets of sexual selection in this species.  相似文献   

5.
The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134–197 fmol STX cell−1) was similar to the parent cultures (169–206 fmol STX cell−1), however cultures grown with single bacterial types contained less toxin (134–146 fmol STX cell−1) than offspring or parent cultures grown with more complex mixed bacterial communities (152–176 fmol STX cell−1). Specific toxin production rate (fmol STX day−1) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell−1 day−1) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX production of dinoflagellates. In G. catenatum the mechanism appears likely to be due to bacterial effects on dinoflagellate physiology rather than bacterial biotransformation of PST toxins.  相似文献   

6.
BackgroundThe mosquito Aedes aegypti is a medically important, globally distributed vector of the viruses that cause dengue, yellow fever, chikungunya, and Zika. Although reproduction and mate choice are key components of vector population dynamics and control, our understanding of the mechanisms of sexual selection in mosquitoes remains poor. In “good genes” models of sexual selection, females use male cues as an indicator of both mate and offspring genetic quality. Recent studies in Ae. aegypti provide evidence that male wingbeats may signal aspects of offspring quality and performance during mate selection in a process known as harmonic convergence. However, the extent to which harmonic convergence may signal overall inherent quality of mates and their offspring remains unknown.Methodology/Principal findingsTo examine this, we measured the relationship between acoustic signaling and a broad panel of parent and offspring fitness traits in two generations of field-derived Ae. aegypti originating from dengue-endemic field sites in Thailand. Our data show that in this population of mosquitoes, harmonic convergence does not signal male fertility, female fecundity, or male flight performance traits, which despite displaying robust variability in both parents and their offspring were only weakly heritable.Conclusions/SignificanceTogether, our findings suggest that vector reproductive control programs should treat harmonic convergence as an indicator of some, but not all aspects of inherent quality, and that sexual selection likely affects Ae. aegypti in a trait-, population-, and environment-dependent manner.  相似文献   

7.
Wang Z  Xia Y  Ji X 《PloS one》2011,6(1):e16585

Background

Studies of lizards have shown that offspring size cannot be altered by manipulating clutch size in species with a high clutch frequency. This raises a question of whether clutch frequency has a key role in influencing the offspring size-number trade-off in lizards.

Methodology/Principal Findings

To test the hypothesis that females reproducing more frequently are less likely to tradeoff offspring size against offspring number, we applied the follicle ablation technique to female Eremias argus (Lacertidae) from Handan (HD) and Gonghe (GH), the two populations that differ in clutch frequency. Follicle ablation resulted in enlargement of egg size in GH females, but not in HD females. GH females switched from producing a larger number of smaller eggs in the first clutch to a smaller number of larger eggs in the second clutch; HD females showed a similar pattern of seasonal shifts in egg size, but kept clutch size constant between the first two clutches. Thus, the egg size-number trade-off was evident in GH females, but not in HD females.

Conclusions/Significance

As HD females (mean  = 3.1 clutches per year) reproduce more frequently than do GH females (mean  = 1.6 clutches per year), our data therefore validate the hypothesis tested. Our data also provide an inference that maximization of maternal fitness could be achieved in females by diverting a large enough, rather than a higher-than-usual, fraction of the available energy to individual offspring in a given reproductive episode.  相似文献   

8.
Empirical studies of cardiovascular variables suggest that relative heart muscle mass (relative Mh) is a good indicator of the degree of adaptive specialization for prolonged locomotor activities, for both birds and mammals. Reasonable predictions for the maximum oxygen consumption of birds during flight can be obtained by assuming that avian heart muscle has the same maximum physiological and biomechanical performance as that of terrestrial mammals. Thus, data on Mh can be used to provide quantitative estimates for the maximum aerobic power input (aerobic Pi,max) available to animals during intense levels of locomotor activity. The maximum cardiac output of birds and mammals is calculated to scale with respect to Mh (g) as 213 Mh0.88+-0.04 (ml min-1), while aerobic Pi,max is estimated to scale approximately as 11 Mh0.88+-0.09 (W). In general, estimated inter-species aerobic Pi,max, based on Mh for all bird species (excluding hummingbirds), is calculated to scale with respect to body mass (Mb in kg) as 81 Mb0.82+-0.11 (W). Comparison of family means for Mh indicate that there is considerable diversity in aerobic capacity among birds and mammals, for example, among the medium to large species of birds the Tinamidae have the smallest relative Mh (0.25 per cent) while the Otidae have unusually large relative Mh (1.6 per cent). Hummingbirds have extremely large relative Mh (2.28 per cent), but exhibit significant sexual dimorphism in their scaling of Mh and flight muscle mass, so that when considering hummingbird flight performance it may be useful to control for sexual differences in morphology. The estimated scaling of aerobic Pi,max (based on Mh and Mb in g) for male and female hummingbirds is 0.51 Mb0.83 +/-0.07 and 0.44 Mb0.85+- 0.11 (W), respectively. Locomotory muscles are dynamic structures and it might be anticipated that where additional energetic ''costs'' occur seasonally (e.g. due to migratory fattening or the development of large secondary sexual characteristics) then the relevant cardiac and locomotor musculature might also be regulated seasonally. This is an important consideration, both due to the intrinsic interest of studying muscular adaptation to changes in energy demand, but also as a confounding variable in the practical use of heart rate to estimate the energetics of animals. Haemoglobin concentration (or haematocrit) may also be a confounding variable. Thus, it is concluded that data on the cardiovascular and flight muscle morphology of animals provides essential information regarding the behavioural, ecological and physiological significance of the flight performance of animals.  相似文献   

9.
The specific attribution of the large hominin M2 (GDA-2) from Gondolin has significant implications for the paleobiology of Paranthropus. If it is a specimen of Paranthropus robustus it impacts that species' size range, and if it belongs to Paranthropus boisei it has important biogeographic implications. We evaluate crown size, cusp proportions and the likelihood of encountering a large-bodied mammal species in both East and South Africa in the Early Pleistocene. The tooth falls well outside the P. robustus sample range, and comfortably within that for penecontemporaneous P. boisei. Analyses of sample range, distribution and variability suggest that it is possible, albeit unlikely to find a M2 of this size in the current P. robustus sample. However, taphonomic agents - carnivore (particularly leopard) feeding behaviors - have likely skewed the size distribution of the Swartkrans and Drimolen P. robustus assemblage. In particular, assemblages of large-bodied mammals accumulated by leopards typically display high proportions of juveniles and smaller adults. The skew in the P. robustus sample is consistent with this type of assemblage. Morphological evidence in the form of cusp proportions is congruent with GDA-2 representing P. robustus rather than P. boisei. The comparatively small number of large-bodied mammal species common to both South and East Africa in the Early Pleistocene suggests a low probability of encountering an herbivorous australopith in both. Our results are most consistent with the interpretation of the Gondolin molar as a very large specimen of P. robustus. This, in turn, suggests that large, presumptive male, specimens are rare, and that the levels of size variation (sexual dimorphism) previously ascribed to this species are likely to be gross underestimates.  相似文献   

10.
We have earlier analysed ESSs for the amount of parental investment (PI) that offspring are expected to solicit from their parents, given that parents acquiesce to offspring demands. The present paper considers evolutionary retaliation by the parent for species where only one parent provides PI. Two genetic loci are envisaged: one (the ‘conflictor’ locus) determines the extent of offspring solicitation; the other (the ‘suppressor’ locus) determines how parents retaliate. Solicitation is assumed to carry a cost which may affect a particular offspring uniquely if time and energy are the major costs, or may affect all offspring in a brood equally if the main cost is predation risk. Two kinds of parental retaliation are possible. Parents may supply PI in proportion to offspring demands, or may ignore solicitation altogether and give a fixed PI. Analytical models of conflict in which the parent supplies PI in proportion to solicitation yield pure ESSs with PI at a compromise level between parent and offspring interests. These are termed ‘pro rata’ ESSs. Where solicitation costs are high, an ‘offspring wins’ ESS (offspring get all they ‘want’) is possible especially for forms of conflict that affect future sibs, and a ‘parent wins’ ESS (parent supplies its optimum) is possible especially for conflict that affects contemporary sibs. When parental retaliation takes the form of ignoring offspring solicitation, this can lead to a ‘parent wins’ ESS if costs of ignoring solicitation are negligible, but where parental insensitivity carries costs, the result is an unresolvable evolutionary chase with cycling frequencies of alleles coding for parent and offspring strategies. ‘Pro rata’ ESSs cannot be invaded by ‘ignore solicitation’ mutants but ‘pro rata’ mutants can often invade at certain stages in ‘ignore solicitation’ limit cycles. We therefore conclude that the probable evolutionary end product for most species will be the ‘pro rata’ ESS in which the parent supplies more PI than would be optimal in the absence of conflict, but less PI than would be an ESS for the offspring in the absence of parental retaliation. Such ESSs will be characterized by solicitation costs; offspring will ‘ask’ for more PI than they get. In nature, under similar conditions, highest conflict will occur when both parents sustain equally the effects of conflict, or when conflict affects contemporary rather than future sibs.  相似文献   

11.
Intralocus sexual conflict arises when selection favours alternative fitness optima in males and females. Unresolved conflict can create negative between‐sex genetic correlations for fitness, such that high‐fitness parents produce high‐fitness progeny of their same sex, but low‐fitness progeny of the opposite sex. This cost of sexual conflict could be mitigated if high‐fitness parents bias sex allocation to produce more offspring of their same sex. Previous studies of the brown anole lizard (Anolis sagrei) show that viability selection on body size is sexually antagonistic, favouring large males and smaller females. However, sexual conflict over body size may be partially mitigated by adaptive sex allocation: large males sire more sons than daughters, whereas small males sire more daughters than sons. We explored the evolutionary implications of these phenomena by assessing the additive genetic (co)variance of fitness within and between sexes in a wild population. We measured two components of fitness: viability of adults over the breeding season, and the number of their progeny that survived to sexual maturity, which includes components of parental reproductive success and offspring viability (RSV). Viability of parents was not correlated with adult viability of their sons or daughters. RSV was positively correlated between sires and their offspring, but not between dams and their offspring. Neither component of fitness was significantly heritable, and neither exhibited negative between‐sex genetic correlations that would indicate unresolved sexual conflict. Rather, our results are more consistent with predictions regarding adaptive sex allocation in that, as the number of sons produced by a sire increased, the adult viability of his male progeny increased.  相似文献   

12.
Parthenogenesis, including facultative parthenogenesis, is common among orthopteroid insects. We investigated the fitness associated with sexual and asexual reproduction within a population of the facultatively parthenogenetic cockroach Nauphoeta cinerea. There is significantly reduced fitness for females reproducing parthenogenetically compared to sexually. Fewer than half of all females can reproduce parthenogenetically. In addition, tenfold fewer offspring are produced by parthenogenesis due to reductions in both the number of offspring produced per clutch and the number of clutches produced. Development and brooding of sexually or parthenogenetically produced first instar nymphs does not differ, although the production of the first parthenogenetic clutch is delayed relative to the first sexually produced clutch. The fitness of parthenogens is also lower than the fitness of sexually produced offspring. Parthenogens are less viable than sexually produced offspring even in the benign conditions of the laboratory. Development to adulthood of parthenogens is slower. Fewer parthenogens survive to adulthood and the adult life span of parthenogens is reduced. Individuals produced by parthenogenetic reproduction are unlikely to reproduce parthenogenetically themselves. Finally, parthenogenetically produced females produce fewer offspring by sexual reproduction than do sexually produced females. Since parthenogenetic reproduction is apomictic in N. cinerea and parthenogens are diploid, we suggest that asexual reproduction is developmentally constrained. Once meiosis has evolved, returning to a mitotic mode of reproduction may be difficult. Nauphoeta cinerea offers a system for testing how asexuality is constrained as modes of reproduction can be compared within a facultative parthenogen.  相似文献   

13.
The impact of alternating magnetic field (AMF) of ultralow and low frequencies during a sevenday-long exposure on Daphnia magna Straus was studied. It is shown that AMF may decrease the survival and the time it takes to reach sexual maturity. AMF with a frequency of 500 Hz has the most pronounced negative impact upon survival and maturation. AMF of 50 Hz accelerates maturation. In a chronic experiment at 500 Hz, the share of vital offspring increased, while the sizes of newborns decreased in parent specimens that matured under the impact of a magnetic field. The action of a 500 Hz AMF on daphnias before littering of offspring leads to an increase in the number of newborns in the reproductive period.  相似文献   

14.
Diverse and abundant bacterial populations play important functional roles in the multi-partite association of the coral holobiont. The specificity of coral-associated assemblages remains unclear, and little is known about the inheritance of specific bacteria from the parent colony to their offspring. This study investigated if broadcast spawning and brooding corals release specific and potentially beneficial bacteria with their offspring to secure maintenance across generations. Two coral species, Acropora tenuis and Pocillopora damicornis, were maintained in 0.2 μm filtered seawater during the release of their gametes and planulae, respectively. Water samples, excluding gametes and planulae, were subsequently collected, and bacterial diversity was assessed through a pyrosequencing approach amplifying a 470-bp region of the 16S rRNA gene including the variable regions 1–3. Compared to the high bacterial diversity harboured by corals, only a few taxa of bacteria were released by adult corals. Both A. tenuis and P. damicornis released similar bacteria, and the genera Alteromonas and Roseobacter were abundant in large proportions in the seawater of both species after reproduction. This study suggests that adult corals may release bacteria with their offspring to benefit the fitness in early coral life stages.  相似文献   

15.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

16.

Background  

The trade-off between current and future parental investment is often different between males and females. This difference may lead to sexual conflict between parents over care provisioning in animals that breed with multiple mates. One of the most obvious manifestations of sexual conflict over care is offspring desertion whereby one parent deserts the young to increase its reproductive success at the expense of its mate. Offspring desertion is a wide-spread behavior, and its frequency often varies within populations. We studied the consistency of offspring desertion in a small passerine bird, the Eurasian penduline tit Remiz pendulinus, that has an extremely variable breeding system. Both males and females are sequentially polygamous, and a single parent (either the male or the female) incubates the eggs and rears the young. About 28–40% of offspring are abandoned by both parents, and these offspring perish. Here we investigate whether the variation in offspring desertion in a population emerges either by each individual behaving consistently between different broods, or it is driven by the environment.  相似文献   

17.
The survival of offspring guarded by both parents and by only the female parent who remained after experimental removal of the male parent was observed in the cichlid fishLamprologus toae in its natural habitat. The number of offspring guarded by both parents abruptly decreased during the period from eggs through postlarvae. It became stable for low rate of mortality when the offspring were between 0.5 and 1.8 cm in body length. The number again decreased this time gradually after attaining 1.8 cm in body length. Mortality seemed to be caused by predation. Experimental removal of the male parent at any larval stage caused the decrease of offspring by predatory fishes. It seems that both parents are indispensable to protect the offspring against predators under natural conditions.  相似文献   

18.
In order to enlarge the potential resources of drought-tolerant peanuts, we conducted in vitro mutagenesis with Pingyangmycin (PYM) as the mutagen as well as directed screening on a medium supplemented with Hydroxyproline (HYP). After being extracted from mature seeds (cv. Huayu 20), the embryonic leaflets were cultured on somatic embryogenesis-induction medium with 4 mg/L PYM and the generated embryos were successively transferred to a germination medium with 4 and then 8 mmol/L HYP to screen HYP-tolerant plantlets. After that, these plantlets were grafted and transplanted to the experimental field. In the next generation, all seeds were sown in the field, and phenotype variation and trait segregation can be observed in most of the offspring (M2 generation). The M3 generation individuals were subjected to drought stress at the seedling stages. The activities of SOD and POD were substantially increased in eight offspring of 11 HYP-tolerant, regenerated plants than in their mutagenic parents. To determine the correlation between mutant phenotypes and genomic modification, we carried out a comparison of the DNA polymorphisms between the mutagenic parents and 13 M3 generation individuals from different HYP-tolerant, regenerated plants with SSR primers. Results showed that most mutants and parent plants had signs of polymorphisms. Under drought stress, some M3 generation individuals of 10 original HYP-tolerant, regenerated plants produced more pods than the mutagenic parent; twenty individuals among them produced >60 g pods/plant. M4-generation seeds were tested for quality characteristics by Near Infrared Spectroscopy (NIS) and nine individuals with higher protein content (>30%) and 21 individuals with higher oil content (>58%) were screened. We concluded that the use of PYM-based in vitro mutagenesis in combination with directed screening with HYP is effective for the creation of potential drought-tolerant mutants of peanut.  相似文献   

19.
The modes of reproduction undoubtedly represent one of the most critical life-history traits because they profoundly affect fitness and survival. The parent–offspring conflict over the degree of parental investment may be the main selective factor in the evolution of reproduction. Although the modes of sexual reproduction are remarkably diversified in animals, the traditional typology spanning three classes does not seem to be adequate to clarify the level of parental investment. Thus, lecithotrophy does not provide any information on the retention of the zygotes inside the parent's body and matrotrophy only indicates that nutrients are provided by mother but does not make any distinction between various types of maternal care. I here present a scientific typology of the reproductive modes comprising five classes: ovuliparity, oviparity, ovo-viviparity, histotrophic viviparity and hemotrophic viviparity. Based on the development stage of the zygote and on its interrelation with the parent, my classification details the degree of contrivances by which animals provide alternative parental investment in their offspring. Hence, this typology possesses a great heuristic value, both in reproduction and evolutionary biology. These different modes of reproduction do represent a sequence, with ovuliparity being the most primitive and hemotrophic viviparity the most advanced mode. Lastly, the comparative analysis of different reproductive modes in vertebrates suggests that climatic conditions (cold) could be one of the strongest selection pressures for extending egg retention and the establishment of viviparity.  相似文献   

20.
Males and females are in conflict over parental care, as it would be favourable for one parent to shift labour to the other. Yolk hormones may offer a mechanism through which female birds could influence offspring traits in ways that increase the relative investment by the male. We studied the role of yolk androgens in mediating sexual conflict over parental care in the collared flycatcher (Ficedula albicollis). In a cross-fostering experiment, the male's proportion of total feeding visits increased with increasing androgen levels in the foster eggs. This could suggest that sexual conflict over parental care may be influenced by the female's differential allocation of yolk androgens or a maternal effect associated with yolk androgens. However, when we experimentally elevated yolk androgen levels, male feeding rates did not differ between control and androgen-manipulated nests. This suggests that other egg components correlated with yolk androgen levels, rather than yolk androgen levels per se, may influence male parental effort. In conclusion, yolk androgens per se do not appear to mediate sexual conflict over parental investment in the collared flycatcher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号