首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite the very high percentage of long-term remissions in acute lymphoblastic leukemia (ALL) in children, some of them suffer from recurrence of the disease. New treatment modalities, e.g. effective geno- and immunotherapy are needed. The use of neoplasmatic cells to present tumor antigens is one of the approaches in cancer vaccines. ALL cells lack the expression of costimulatory molecules and are poor antigen presenting cells (APCs) for T-cell activation. CD40/40L interaction stimulates B-cells to proliferate, differentiate, upregulate costimulatory molecules and increase antigen presentation. The aim of the study was to test the hypothesis that ALL cells can be turned into professional APCs by CD40L activation. Children with B-cell precursor ALL were enrolled into the study. Mononuclear cells from bone marrow or peripheral blood were stimulated with CD40L and interleukin 4. Results: 1) after culture we noted upregulation of all assessed costimulatory, adhesion and activatory molecules i.e. CD1a, CD11c, CD40, CD54, CD80, CD83, CD86, CD123, HLA class I and II; 2) CD40L activated ALL cells induced proliferation of allogeneic T-cells (measured by [(3)H]thymidine incorporation). These results confirm the possibility of enhancing the immunogenicity of ALL cells with the CD40L system and indicate that this approach can be used in immunotherapeutic trials.  相似文献   

2.
Measles virus (MV) infection induces a profound immunosuppression responsible for a high rate of mortality in malnourished children. MV can encounter human dendritic cells (DCs) in the respiratory mucosa or in the secondary lymphoid organs. The purpose of this study was to investigate the consequences of DC infection by MV, particularly concerning their maturation and their ability to generate CD8+ T cell proliferation. We first show that MV-infected Langerhans cells or monocyte-derived DCs undergo a maturation process similarly to the one induced by TNF-alpha or LPS, respectively. CD40 ligand (CD40L) expressed on activated T cells is shown to induce terminal differentiation of DCs into mature effector DCs. In contrast, the CD40L-dependent maturation of DCs is inhibited by MV infection, as demonstrated by CD25, CD69, CD71, CD40, CD80, CD86, and CD83 expression down-regulation. Moreover, the CD40L-induced cytokine pattern in DCs is modified by MV infection with inhibition of IL-12 and IL-1alpha/beta and induction of IL-10 mRNAs synthesis. Using peripheral blood lymphocytes from CD40L-deficient patients, we demonstrate that MV infection of DCs prevents the CD40L-dependent CD8+ T cell proliferation. In such DC-PBL cocultures, inhibition of CD80 and CD86 expression on DCs was shown to require both MV replication and CD40 triggering. Finally, for the first time, MV was shown to inhibit tyrosine-phosphorylation level induced by CD40 activation in DCs. Our data demonstrate that MV replication modifies CD40 signaling in DCs, thus leading to impaired maturation. This phenomenon could play a pivotal role in MV-induced immunosuppression.  相似文献   

3.
CD40, a tumor necrosis factor (TNF) receptor (TNFR) family member, conveys signals regulating diverse cellular responses, ranging from proliferation and differentiation to growth suppression and cell death. The ability of CD40 to mediate apoptosis in carcinoma cells is intriguing given the fact that the CD40 cytoplasmic C terminus lacks a death domain homology with the cytotoxic members of the TNFR superfamily, such as Fas, TNFR1, and TNF-related apoptosis-inducing ligand (TRAIL) receptors. In this study, we have probed the mechanism by which CD40 transduces death signals. Using a trimeric recombinant soluble CD40 ligand to activate CD40, we have found that this phenomenon critically depends on the membrane proximal domain (amino acids 216 to 239) but not the TNFR-associated factor-interacting PXQXT motif in the CD40 cytoplasmic tail. CD40-mediated cytotoxicity is blocked by caspase inhibitors, such as zVAD-fmk and crmA, and involves activation of caspase 8 and caspase 3. Interestingly, CD40 ligation was found to induce functional Fas ligand, TRAIL (Apo-2L) and TNF in apoptosis-susceptible carcinoma cells and to up-regulate expression of Fas. These findings identify a novel proapoptotic mechanism which is induced by CD40 in carcinoma cells and depends on the endogenous production of cytotoxic cytokines and autocrine or paracrine induction of cell death.  相似文献   

4.
We previously showed that murine Langerhans cells (LC) express CD40 ligand (CD40L). In this study, we further investigated the function of CD40L on LC using agonistic antibodies and CD40L knockout (KO) mice. Signaling through CD40L decreased CD80 expression on LC 48 h after stimulation and the decrease was more remarkable in the presence of interferon-gamma (IFN-gamma). Signaling through CD40 enhanced the production of IL-12 p40 from LC, and simultaneous signaling through CD40L slightly augmented this effect. Addition of IFN-gamma further enhanced IL-12 p40 production. LC from CD40L KO mice expressed similar levels of surface molecules such as CD40, CD80, CD86, and MHC class II, compared with those from wild-type mice. However, they produced less amount of IL-12 p40 during 48 h after purification. These results suggest that signaling through CD40L on LC is important in regulating IL-12 production, which is critical for Th1 type immune responses.  相似文献   

5.
6.
An understanding of the biochemical control of dendritic cell (DC) differentiation/activation is essential for improving T cell immunity by various immunotherapeutic approaches, including DC immunization. Ligation of CD40 enhances DC function, including conditioning for CTL priming. NF-kappaB, and particularly RelB, is an essential control pathway for myeloid DC differentiation. Furthermore, RelB regulates B cell Ag-presenting function. We hypothesized that CD40 ligand (CD40L) and TNF-alpha, which differ in their capacity to condition DC, would also differ in their capacity to activate NF-kappaB. DC differentiated for 2 days from monocytes in the presence of GM-CSF and IL-4 were used as a model, as NF-kappaB activity was constitutively low. The capacity of DC to activate T cells following CD40L treatment was enhanced compared with TNF-alpha treatment, and this was NF-kappaB dependent. Whereas RelB/p50 translocation induced by TNF-alpha was attenuated after 6 h, RelB/p50 nuclear translocation induced by CD40L was sustained for at least 24 h. The mechanism of this difference related to enhanced degradation of IkappaBalpha following CD40L stimulation. However, NF-kappaB activation induced by TNF-alpha could be sustained by blocking autocrine IL-10. These data indicate that NF-kappaB activation is essential for T cell activation by DC, and that this function is enhanced if DC NF-kappaB activation is prolonged. Because IL-10 moderates DC NF-kappaB activation by TNF-alpha, sustained NF-kappaB activation can be achieved by blocking IL-10 in the presence of stimuli that induce TNF-alpha.  相似文献   

7.
Type-I plasminogen activator inhibitor (PAI-1) is the primary inhibitor of both tissue- and urokinase-type plasminogen activators (t-PA, u-PA) and is thus a primary regulator of plasminogen activation and possibly of extracellular proteolysis. In anchorage-dependent cells, the PAI-1 gene was regulated by cell adhesion. PAI-1 gene expression was induced more evidently in cells adhered to the culture plate than in nonadherent cells. In this study, we investigated the signal pathway of the PAI-1 gene expression regulated by cell adhesion. We found the induction of both PAI-1 mRNA and protein, when cells adhered to culture dish, was inhibited by the PI-3 kinase specific inhibitors (Ly294002 and wortmannin). The cells seeded on collagen-1 coated plate with low serum further demonstrated that the PAI-1 gene expression was prolonged by the cell adhesion. The above-mentioned PI-3 kinase specific inhibitors also blocked the PAI-1 maintenance when cell adhered to collagen-1 coated plate. In addition, we found that both PI-3 kinase and its downstream molecule, Akt, were activated more evidently in adherent cells than in nonadherent cells. Furthermore, we transfected antisense oligodeoxynucleotides of Akt (AS-ODN-Akt) into cells to block the expression of Akt and found that the induction of PAI-1 mRNA was also inhibited. Hence, we conclude that the induction of PAI-1 gene expression is cell adhesion dependent and is through PI-3 kinase and Akt activation.  相似文献   

8.
Mast cells and immature dendritic cells (DC) are in close contact in peripheral tissues. Upon activation, mast cells release histamine, a mediator involved in the immediate hypersensitivity reaction. We therefore tested whether histamine could affect human DC activation and maturation. Histamine induces CD86 expression on immature DC in a dose-dependent (significant at 10(-7) M) and transient manner (maximal after 24-h stimulation). Histamine also transiently up-regulates the expression of the costimulatory and accessory molecules, CD40, CD49d, CD54, CD80, and MHC class II. As a consequence, immature DC exposed for 24 h to histamine stimulate memory T cells more efficiently than untreated DC. In addition, histamine induces a potent production of IL-6, IL-8, monocyte chemoattractant protein 1, and macrophage-inflammatory protein 1alpha by immature DC and also up-regulates IL-1beta, RANTES, and macrophage-inflammatory protein 1beta but not TNF-alpha and IL-12 mRNA expression. Histamine activates immature DC through both the H1 and H2 receptors. However, histamine-treated DC do not have a phenotype of fully mature cells, as they do neither show significant changes in the expression of the chemokine receptors, CCR5, CCR7 and CXC chemokine receptor 4, nor expression of CD83 de novo. These data demonstrate that histamine activates immature DC and induces chemokine production, thereby suggesting that histamine, via stimulation of resident DC, may participate locally in T cell stimulation and in the late inflammatory reaction associated with allergic disorders.  相似文献   

9.
Francisella tularensis is an obligate intracellular bacterium that induces severe, acute, often fatal disease when acquired by the respiratory route. Despite the seriousness of this pathogen, very little is understood about its interaction with key target cells in the airways and lungs (alveolar macrophages and airway dendritic cells (DC)) after inhalation. In this study we demonstrate replication of F. tularensis in primary DC. Early after infection, F. tularensis induced increased expression of MHC class II and CD86 on DC, but not macrophages. This was followed by depletion of DC from the airways and lungs. Despite logarithmic replication and phenotypic maturation of DC, F. tularensis failed to induce production of several key proinflammatory cytokines, including TNF-alpha and IL-6, from DC. However, F. tularensis infection did elicit production of the potent immunosuppressive cytokine, TGF-beta. Furthermore, F. tularensis actively suppressed the ability of DC to secrete cytokines in response to specific TLR agonists. Finally, we also found that infection of DC and macrophages in the lungs appears to actually increase the severity of pulmonary infection with F. tularensis. For example, depletion of airway DC and alveolar macrophages before infection resulted in significantly prolonged survival times. Together, these data suggest F. tularensis is able to selectively uncouple Ag-presenting functions from proinflammatory cytokine secretion by critical APCs in the lungs, which may serve to create a relatively immunosuppressive environment favorable to replication and dissemination of the organism.  相似文献   

10.
We examined activation of the serine/threonine kinase Akt in the murine B cell line A20. Akt is activated in a phosphoinositide 3-kinase (PtdIns 3-kinase)-dependent manner upon stimulation of the antigen receptor, surface immunoglobulin (sIg). In contrast, Akt induction is reduced upon co-clustering of sIg with the B cell IgG receptor, FcgammaRIIb. Co-clustering of sIg-FcgammaRIIb transmits a dominant negative signal and is associated with reduced accumulation of the PtdIns 3-kinase product phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P3), known to be a potent activator of Akt. PtdIns 3-kinase is activated to the same extent with and without FcgammaRIIb co-ligation, indicating conditions supporting the generation of PtdIns 3,4,5-P3. We hypothesized that the decreased Akt activity arises from the consumption of PtdIns 3,4,5-P3 by the inositol-5-phosphatase Src homology 2-containing inositol 5-phosphatase (SHIP), which has been shown by us to be tyrosine-phosphorylated and associated with FcgammaRIIb when the latter is co-ligated. In direct support of this hypothesis, we report here that Akt induction is greatly reduced in fibroblasts expressing catalytically active but not inactive SHIP. Likewise, the reduction in Akt activity upon sIg-FcgammaRIIb co-clustering is absent from avian B cells lacking expression of SHIP. These findings indicate that SHIP acts as a negative regulator of Akt activation.  相似文献   

11.
Although hypergastrinemia is frequently observed in individuals with a chronic Helicobacter pylori infection, its pathophysiological significance in gastric mucosal inflammation is unclear. The present study was designed to determine if gastrin induces the expression of CXC chemokines in gastric epithelial cells. Human and rat gastric epithelial cells, transfected with gastrin receptor, were stimulated with gastrin. The expression of mRNAs for human interleukin-8 (IL-8) and rat cytokine-induced neutrophil chemoattractant-1 and release of human IL-8 protein were then determined by Northern blot analysis and ELISA, respectively. Gastrin not only induced the expression of mRNAs for these chemokines but also stimulated IL-8 protein release. A luciferase assay using IL-8 promoter genes showed that nuclear factor (NF)-kappaB is absolutely required and activator protein-1 (AP-1) is partly required for the maximum induction of IL-8 by gastrin. An electrophoretic mobility shift assay revealed that gastrin is capable of activating both NF-kappaB and AP-1. In addition, the inhibition of NF-kappaB abrogated gastrin-induced chemokine expression. These results suggest that gastrin is capable of upregulating CXC chemokines in gastric epithelial cells and therefore may contribute to the progression of the inflammatory process in the stomach.  相似文献   

12.
In vivo, dendritic cells (DC) are programmed to orchestrate innate and adaptive immunity in response to pathogen-derived "danger" signals. Under particular circumstances, DC can also be directly cytotoxic against tumor cells, potentially allowing them to release tumor associated Ags from dying cells and then prime antitumor immunity against them. In this study, we describe the innate characteristics of DC (OK-DC) generated in vitro after exposure of immature human myeloid-derived DC to OK432, a penicillin-inactivated and lyophilized preparation of Streptococcus pyrogenes. OK-DC produced proinflammatory cytokines, stimulated autologous T cell proliferation and IFN-gamma secretion, expressed CCR7, and migrated in response to MIP-3beta. Moreover, OK-DC displayed strong, specific cytotoxicity toward tumor cell targets. This cytotoxicity was associated with novel, OK432-induced up-regulation of CD40L on the cell surface of OK-DC, and was absolutely dependent on expression of CD40 on the tumor targets. These data demonstrate that maturation of human DC with OK432, an adjuvant suitable for clinical use, induces direct tumor cell killing by DC, and describes a novel CD40/CD40L-mediated mechanism for specific DC antitumor cytotoxicity.  相似文献   

13.
CD27, a member of the TNF receptor superfamily, has been implicated in T cell activation, T cell development, and T cell-dependent Ab production by B cells. In the present study we examined the expression and function of CD27 on murine NK cells. Murine NK cells constitutively expressed CD27 on their surface. Stimulation with immobilized anti-CD27 mAb or murine CD27 ligand (CD70) transfectans solely could induce proliferation and IFN-gamma production of freshly isolated NK cells and enhanced the proliferation and IFN-gamma production of anti-NK1.1-sutimulated NK cells. Although NK cell cytotoxicity was not triggered by anti-CD27 mAb or against CD70 transfectants, prestimulation via CD27 enhanced the cytotoxic activity of NK cells in an IFN-gamma-dependent manner. These results suggest that CD27-mediated activation may be involved in the NK cell-mediated innate immunity against virus-infected or transformed cells expressing CD70.  相似文献   

14.
Canstatin, a 24-kDa peptide derived from the C-terminal globular non-collagenous (NC1) domain of the alpha2 chain of type IV collagen, was previously shown to induce apoptosis in cultured endothelial cells and to inhibit angiogenesis in vitro and in vivo. In this report, we demonstrate that canstatin inhibits the phosphorylation of Akt, focal adhesion kinase, mammalian target of rapamycin, eukaryotic initiation factor-4E-binding protein-1, and ribosomal S6 kinase in cultured human umbilical vein endothelial cells. It also induces Fas ligand expression, activates procaspases 8 and 9 cleavage, reduces mitochondrial membrane potential, and increases cell death (as determined by propidium iodide staining). Canstatin-induced activation of procaspases 8 and 9 as well as the induced reduction in mitochondrial membrane potential and cell viability were attenuated by the forced expression of FLICE-inhibitory protein. Canstatin-induced procaspase 8 activation and cell death were also inhibited by a neutralizing anti-Fas antibody. Collectively, these data indicate that canstatin-induced apoptosis is associated with phosphatidylinositol 3-kinase/Akt inhibition and is dependent upon signaling events transduced through membrane death receptors.  相似文献   

15.
Protocatechuic acid (PCA) is a main metabolite of anthocyanins, whose daily intake is much higher than that of other polyphenols. PCA has biological effects, e.g., it induces the antioxidant/detoxifying enzyme gene expression. This study was aimed at defining the molecular mechanism responsible for PCA-induced over-expression of glutathione (GSH) peroxidase (GPx) and GSH reductase (GR) in J774 A.1 macrophages. New evidence is provided that PCA increases GPx and GR expression by inducing C-JUN NH2-terminal kinase (JNK)-mediated phosphorylation of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). RNA and proteins were extracted from cells treated with PCA (25 μM) for different time points. Quantitative real-time polymerase chain reaction and immunoblotting analyses showed a rapid increase in mRNA (>60%) and protein (>50%) for both the enzymes. This was preceded by the up-regulation of Nrf2, in terms of mRNA and protein, and by its significant activation as assessed by increased Nrf2 phosphorylation and nuclear translocation (+60%). By using specific kinase inhibitors and detecting the activated form, we showed that JNK was the main upstream kinase responsible for Nrf2 activation. Convincing evidence is provided of a causal link between PCA-induced Nrf2 activation and increased enzyme expression. By silencing Nrf2 and using a JNK inhibitor, enzyme enhancement was counteracted. Finally, with the ChIP assay, we demonstrated that PCA-activated Nrf2 specifically bound ARE sequences in enzyme gene promoters. Our study demonstrates for the first time that PCA improves the macrophage endogenous antioxidant potential by a mechanism in which JNK-mediated Nrf2 activation plays an essential role. This knowledge could contribute to novel diet-based approaches aimed at counteracting oxidative injury by reinforcing endogenous defences.  相似文献   

16.
CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells   总被引:17,自引:0,他引:17  
The outcome of dendritic cell (DC) presentation of P815AB, a tolerogenic tumor/self peptide, depends on a balance between the respective immunogenic and tolerogenic properties of myeloid (CD8 alpha(-)) and lymphoid (CD8 alpha(+)) DC. We have previously shown that CD8(-) DC can be primed by IL-12 to overcome inhibition by the CD8(+) subset and initiate immunogenic presentation in vivo when the two types of peptide-pulsed DC are cotransferred into recipient hosts. IFN-gamma enhances the inhibitory activity of CD8(+) DC on Ag presentation by the other subset, blocking the ability of IL-12-treated CD8(-) DC to overcome suppression. We report here that CD40 ligation on lymphoid DC ablated their inhibitory function on Ag presentation as well as IFN-gamma potentiation of the effect. CD40 modulation of IFN-gamma action on lymphoid DC involved a reduction in IFN-gamma R expression and tryptophan-degrading ability. This effect was accompanied in vitro by an impaired capacity of the CD40-modulated and IFN-gamma-treated DC to initiate T cell apoptosis. In vivo, not only did CD40 triggering on lymphoid DC abrogate their tolerogenic activity, but it also induced the potential for immunogenic presentation of P815AB. Importantly, a pattern similar to P815AB as well as CD40 modulation of lymphoid DC function were observed on testing reactivity to NRP, a synthetic peptide mimotope recognized by diabetogenic CD8(+) T cells in nonobese diabetic mice.  相似文献   

17.
The possibility that the sphingomyelin (SM)-ceramide pathway is activated by CD40, a transmembrane glycoprotein belonging to the tumor necrosis factor receptor superfamily and that plays a critical role in the regulation of immune responses has been investigated. We demonstrate that incubation of Epstein-Barr virus-transformed lymphoid cells with an anti-CD40 antibody acting as an agonist results in the stimulation of a neutral sphingomyelinase, hydrolysis of cellular SM, and concomitant ceramide generation. In addition, SM degradation was observed in acid sphingomyelinase-deficient cells, as well as after ligation by soluble CD40 ligand. The anti-CD40 antibody, as well as the soluble CD40 ligand induced a decrease in thymidine incorporation and morphological features of apoptosis, which were mimicked by cell-permeant or bacterial sphingomyelinase-produced ceramides. Stable expression of a dominant-negative form of the FAN protein (factor associated with neutral sphingomyelinase activation), which has been reported to mediate tumor necrosis factor-induced activation of neutral sphingomyelinase, significantly inhibited CD40 ligand-induced sphingomyelinase stimulation and apoptosis of transformed human fibroblasts. Transformed fibroblasts from FAN knockout mice were also protected from CD40-mediated cell death. Finally, anti-CD40 antibodies were able to co-immunoprecipitate FAN in control fibroblasts but not in cells expressing the dominant-negative form of FAN, indicating interaction between CD40 and FAN. Altogether, these results strongly suggest that CD40 ligation can activate via FAN a neutral sphingomyelinase-mediated ceramide pathway that is involved in the cell growth inhibitory effects of CD40.  相似文献   

18.
CD48 is a glycosyl phosphatidylinositol anchor protein known to be virtually expressed by all human leukocytes. Its ligand, 2B4, is a signaling lymphocyte activation molecule-related receptor involved in NK cell activation. Because dendritic cells (DCs) are strong inducers of NK cell functions, we analyzed the expression of CD48 in different human DC subsets. We observed that monocytes differentiating in DCs promptly down-regulate CD48. Similarly, DCs isolated from inflamed lymph nodes generally do not express CD48. Plasmocytoid DCs do not express CD48 either, whereas myeloid DCs harbored in blood, bone marrow, and thymus express it. In addition, we showed that CD48 expression in DCs affects NK cell functions during NK/DC cross-talk, because NK cells obtained from normal donors and from X-linked lymphoproliferative disease patients are, respectively, triggered or inhibited by DCs expressing surface CD48. Remarkably, IFN-gamma production by lymph node NK cells, in contrast to blood NK cells, can be negatively modulated by 2B4/CD48 interactions, indicating a 2B4 inhibitory pathway in lymph node NK cells. Therefore, the CD48 deficiency of DCs harbored in inflamed lymph nodes that we report in this study might be relevant to successfully activate lymph node NK cells in the early phase of the immune response. Our results show that distinct subsets of human DCs, differently from all other mononuclear hemopoietic cells, specifically do not express CD48. Moreover, the expression of CD48 depends on the anatomic location of DCs and might be related to the tissue-specific 2B4 function (activating or inhibitory) of the NK cells with which they interact.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) has been known as a potent immunosuppressive cytokine that can induce apoptosis in lymphoid cells. We established an IL-2-independent cell line, CTLL-2A, from murine T cell line CTLL-2. CTLL-2A expressed higher levels of CD95, CD69, and CD18 molecules than CTLL-2 did, suggesting a more activated state in CTLL-2A than in the CTLL-2 by phenotype. Exposing both CTLL-2 and CTLL-2A to TGF-beta results in differential apoptosis patterns defined by DNA fragmentation and plasma membrane alteration. Among the bcl-2 family members, bcl-2, bcl-w, and bcl-x(L) were also differently expressed in these two cell lines. In CTLL-2A, bcl-x(L) was amplified as a major anti-apoptotic molecule, and TGF-beta-induced cell death was more enhanced than in the original cell line. Caspase 1-like protease was activated by TGF-beta treatment and consequently it cleaved bcl-x(L) in CTLL-2A. TGF-beta-induced DNA fragmentation and cleavage of bcl-x(L) were inhibited by pretreatment with tetra peptide caspase 1 inhibitor, YVAD.cmk. These findings suggest that TGF-beta induces cell death in activated murine T cells through cleavage of bcl-x(L) via activated caspase 1-like protease, which may act as an important executor in that process.  相似文献   

20.
Nitric oxide (NO), an important effector molecule of the innate immune system, can also regulate adaptive immunity. In this study, the molecular effects of NO on the toll-like receptor signaling pathway were determined using interleukin-12 (IL-12) as an immunologically relevant target gene. The principal conclusion of these experiments is that NO inhibits IL-1 receptor-associated kinase (IRAK) activity and attenuates the molecular interaction between tumor necrosis factor receptor-associated factor-6 and IRAK. As a consequence, the NO donor S-nitroso-N-acetylpenicillamine (SNAP) inhibits lipopolysaccharide (LPS)-induced IL-12 p40 mRNA expression, protein production, and promoter activity in murine macrophages, dendritic cells, and the murine macrophage cell line RAW 264.7. Splenocytes from inducible nitric-oxide synthase-deficient mice demonstrate markedly increased IL-12 p40 protein and mRNA expression compared with wild type splenocytes. The inhibitory action of NO on IL-12 p40 is independent of the cytokine IL-10. The effects of NO can be directly attributed to inhibition of NF-kappaB activation through IRAK-dependent pathways. Accordingly, SNAP strongly reduces LPS-induced NF-kappaB DNA binding to the p40 promoter and inhibits LPS-induced IkappaB phosphorylation. Similarly, NO attenuates IL-1beta-induced NF-kappaB activation. These experiments provide another example of how an innate immune molecule may have a profound effect on adaptive immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号