首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1IntroductionAdhesive forces exist between soil and the surfacesof soil-engaging components[1,2].Soil adhesion increasesthe running resistance and energy consumption,andaffects the operating quality.Soil adhesion also reducesthe working productivity of terrain machines,even worseit makes terrain machines fail to run.Reducing theadhesive force of the soil-engaging machines will have aprofound influence for cultivation.Through theinvestigation of soil animals,we have found that soilanimals poss…  相似文献   

2.
A number of investigations into application of polymers for macro-morphological modification of tool surface have been carried out. These researches, with extensive stress on convex or domed protuberations as one of the widely used construction units, have tried to harness benefits from using polymers in agriculture. Ultra high molecular weight polyethylene (UHMW-PE) has proved an emerging polymer in its application to reduce soil adhesion. This research was conducted to study the effect of shape (flat, semi-spherical, semi-oblate, semi short-prolate and semi long-prolate) and dimensions (base diameter and dome height) on sliding resistance and normal adhesion of biomimetic plates. To incorporate both shape and size, a dimensionless ratio of height to diameter (HDR) was introduced to characterize the effect of construction unit's physique. Experiments were conducted in Bangkok clay soil with dry ( 19.8% d.b.), sticky (36.9% d.b.) and flooded (60.1% d.b.) soil conditions respectively. Soil at sticky limit exhibited the highest sliding resistance (77.8 N) and normal adhesion (3 kPa to 7 kPa), whereas these values were 61.7 N and 〈0.2 kPa in dry, and 53.7 N and 0.5 kPa to 1.5 kPa in flooded soil conditions. Protuberances with HDR ≤ 0.5 lowered sliding resistance by 10% - 30% and the same reduced normal adhesion by 10% - 60%. The amount of reduction in both sliding resistance and normal adhesion was higher in flooded soil. Lighter normal loads obviously produced lesser resistance and adhesion.  相似文献   

3.
The formation of biofilms on medical-context surfaces gives the EPS embedded bacterial community protection and additional advantages that planktonic cells would not have such as increased antibiotic resistance and horizontal gene transfer. Bacterial cells tend to attach to a conditioning layer after overcoming possible electrical barriers and go through two phases of attachments: reversible and irreversible. In the first, bacterial attachment to the surface is reversible and occurs quickly whilst the latter is permanent and takes place over a longer period of time. Upon reaching a certain density in the bacterial community, quorum sensing causes phenotypical changes leading to a loss in motility and the production of EPS. This position paper seeks to address the problem of bacterial adhesion and biofilm formation for the medical surfaces by comparing inhabiting physicochemical interactions and biological mechanisms. Several physiochemical methodologies (e.g. ultrasonication, alternating magnetic field and chemical surface coating) and utilizing biological mechanisms (e.g. quorum quenching and EPS degrading enzymes) were suggested. The possible strategical applications of each category were suggested and evaluated to a balanced position to possibly eliminate the adhesion and formation of biofilms on medical-context surfaces.  相似文献   

4.
Somites are condensations of mesodermal cells that form along the two sides of the neural tube during early vertebrate development. They are one of the first instances of a periodic pattern, and give rise to repeated structures such as the vertebrae. A number of theories for the mechanisms underpinning somite formation have been proposed. For example, in the “clock and wavefront” model (Cooke and Zeeman in J. Theor. Biol. 58:455–476, 1976), a cellular oscillator coupled to a determination wave progressing along the anterior-posterior axis serves to group cells into a presumptive somite. More recently, a chemical signaling model has been developed and analyzed by Maini and coworkers (Collier et al. in J. Theor. Biol. 207:305–316, 2000; Schnell et al. in C. R. Biol. 325:179–189, 2002; McInerney et al. in Math. Med. Biol. 21:85–113, 2004), with equations for two chemical regulators with entrained dynamics. One of the chemicals is identified as a somitic factor, which is assumed to translate into a pattern of cellular aggregations via its effect on cell–cell adhesion. Here, the authors propose an extension to this model that includes an explicit equation for an adhesive cell population. They represent cell adhesion via an integral over the sensing region of the cell, based on a model developed previously for adhesion driven cell sorting (Armstrong et al. in J. Theor. Biol. 243:98–113, 2006). The expanded model is able to reproduce the observed pattern of cellular aggregates, but only under certain parameter restrictions. This provides a fuller understanding of the conditions required for the chemical model to be applicable. Moreover, a further extension of the model to include separate subpopulations of cells is able to reproduce the observed differentiation of the somite into separate anterior and posterior halves. N.J. Armstrong was supported by a Doctoral Training Account Studentship from EPSRC. K.J. Painter and J.A. Sherratt were supported in part by Integrative Cancer Biology Program Grant CA113004 from the US National Institute of Health and in part by BBSRC grant BB/D019621/1 for the Centre for Systems Biology at Edinburgh.  相似文献   

5.
Materials with appropriate adhesive properties are suitable for the fabrication of bionic adhesive pads. In this study, a novel polydimethylsiloxane (PDMS) material enhanced with two types of crosslinkers, carbon nanotubes and graphene sheets, was fabricated. The Contact Angle (CA) and cross-sectional morphology of the new material were investigated and observed using a CA meter and Scanning Electron Microscopy (SEM), respectively. CA measurements indicate that the surface energy of the novel material is twice that of the common PDMS material. SEM observations show that carbon nanotubes and graphene sheets are well dispersed in the polymer, a feature that improves the mechanical properties of the new material. The adhesive performance of this novel composite was tested on an in-house fabricated friction machine. Results show that at a preload of only 50 mN, the adhesion of the novel PDMS material is up to -3.7 times that of common PDMS. The maximum macroscale shear strength and normal adhesion reach 4 N·cm^-2 and 1 N·cm^-2, respectively. The adhesive capability of the material is maintained even after hundreds of times of repeated use. This novel material exhibits excellent adhesion, sufficiently high elastic modulus and high repeatability at low preloads.  相似文献   

6.
The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.  相似文献   

7.
The effect of microscale contact of rough surfaces on the adhesion and friction under negative normal forces was experimentally investigated. The adhesive force of single point contact - sapphire ball to flat polyurethane did not vary with the normal force. With rough surface contact, which was assumed to be a great number of point contacts, the adhesive force increased logarithmically with the normal force. Under negative normal force adhesive state, the tangential force (more than hundred mN) were much larger than the negative normal force (several mN) and increased with the linear decrease of negative normal force. The results reveal why the gecko's toe must slide slightly on the target surface when it makes contact on a surface and suggest how a biomimetic gecko foot might be designed.  相似文献   

8.
冬小麦近轴和远轴叶面气孔对土壤水分胁迫反应的敏感性   总被引:3,自引:0,他引:3  
当根层土壤水分含量不足,作物体内出现水分胁迫时,小麦叶片两面气孔的反应有明显差异。远轴叶面气孔对水分胁迫的反应比近轴叶面气孔敏感。当出现水分胁迫时,远轴叶面气孔首先收缩,且收缩的程度比近轴叶面气孔大。远轴与近轴叶面气孔阻力的比值(r_(ab)/r_(ab))与根层平均土壤水势(Ψ_s)有关,当Ψ_s大于-50 kPa时,r_(ab)/r_(ad)基本稳定在1.5左右,而当Ψ_s小于-50 kPa时,r_(ab )/r_(ab)随Ψ_s降低而明显增加。  相似文献   

9.
In dry attachment systems of spiders and geckos, van der Waals forces mediate attraction between substrate and animaltarsus. In particular, the scopula of Evarcha arcuata spiders allows for reversible attachment and easy detachment to a broadrange of surfaces. Hence, reproducing the scopula’s roughness compatibility while maintaining anti-bunching features and dirtparticle repellence behavior is a central task for a biomimetic transfer to an engineered model. In the present work we model thescopula of E. arcuata from a mechano-elastic point of view analyzing the influence of its hierarchical structure on the attachmentbehavior. By considering biological data of the gecko and spider, and the simulation results, the adhesive capabilities of thetwo animals are compared and important confirmations and new directives in order to reproduce the overall structure are found.Moreover, a possible suggestion of how the spider detaches in an easy and fast manner is proposed and supported by the results.  相似文献   

10.
目的:对比锁定加压钢板与动力加压钢板治疗肱骨中下段骨折患者的临床疗效。方法:抽取我院2010年8月~2013年12月收治的肱骨中下段骨折患者76例,按照随机数字表法分为锁定组(锁定加压钢板治疗)与动力组(动力加压钢板治疗),每组38例,随访1年。对比两组患者临床指标,治疗效果及并发症发生率。结果:锁定组患者手术时间、骨折愈合时间及住院时间均小于动力组,差异均有统计学意义(P0.05);锁定组患者优良率为89.47%,显著高于动力组的71.05%,差异有统计学意义(P0.05);锁定组的并发症发生率为10.53%,显著低于动力组的31.58%,差异有统计学意义(P0.05)。结论:锁定加压钢板应用于治疗肱骨中下段骨折患者疗效优于动力加压钢板治疗,它具有创伤小、恢复快的优点,且并发症发生率较低,值得推广。  相似文献   

11.
12.
The static adhesion of living L1210 cells to sulfonated copolymer surfaces of different sulfonic group content and the actin cytoskeleton organization in the adhering cells were studied. The strength of the cell-substratum interaction was estimated by determining the relative number of cells remaining adherent despite experiencing a shearing force equal to 1.25 x 10(-11) N caused by the laminar flow of the medium. The cell-substratum interaction took place in a medium with or without serum. The distribution of F-actin and alpha-actinin in the adhering cells was determined in sequences of fluorescent images of cell optical slices with the use of a computer method of cell image analysis. It was shown that the surface sulfonic groups affect not only the rate and strength of cell-substratum adhesion but also the F-actin and alpha-actinin distribution (in the cell regions near the substratum surface) in cells adhering in the medium containing serum. These proteins, concentrated in the tips of microvilli, were observed as dots. The distinctness (discernibleness) and sizes of these dots depend on the surface content of sulfonic groups. F-actin is located at the periphery of the cells in cells adhering in the medium without serum and alpha-actinin is concentrated in small dots at the periphery and in the central part of the cells.  相似文献   

13.
Adhesive interactions between Candida albicans and oral bacteria are generally thought to play a crucial role in the microbial colonization of denture acrylic, which may lead to denture stomatitis. This study investigated the influence of saliva on the adhesive interactions between C. albicans and Streptococcus sanguis or Actinomyces naeslundii on denture acrylic. First, bacteria were allowed to adhere to the acrylic surface from a flowing suspension, and subsequently yeasts were flowed over the acrylic surface. The organisms were assayed in the presence or absence of human whole saliva. All experiments were carried out in a parallel plate flow chamber and enumeration was done in situ with an image analysis system. In the absence of adhering bacteria, adhesion of C. albicans from buffer was more extensive than from saliva. However, in the presence of adhering bacteria, yeast adhesion from saliva was increased with respect to adhesion of yeasts from buffer, indicating that specific salivary components constitute a bridge between bacteria and yeasts. In all cases, yeast aggregates consisting of 3 to 5 yeast cells were observed adhering to the surface. A surface physico-chemical analysis of the microbial cell surfaces prior to and after bathing the microorganisms in saliva, suggests that this bridging is mediated by acid-base interactions since all strains show a major increase in electron-donating surface free energy parameters upon bathing in saliva, with no change in their zeta potentials. The surface physico-chemical analysis furthermore suggests that S. sanguis and A. naeslundii may use a different mechanism for adhesive interactions with C. albicans in saliva.  相似文献   

14.
AIMS: To investigate aggregation and adhesiveness of Lactobacillus acidophilus M92 to porcine ileal epithelial cells in vitro, and the influence of cell surface proteins on autoaggregation and adhesiveness of this strain. METHODS AND RESULTS: Lactobacillus acidophilus M92 exhibits a strong autoaggregating phenotype and manifests a high degree of hydrophobicity determined by microbial adhesion to xylene. Aggregation and hydrophobicity were abolished upon exposure of the cells to pronase and pepsin. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of cell surface proteins revealed the presence of potential surface layer (S-layer) proteins, approximated at 45 kDa, in L. acidophilus M92. The relationship between autoaggregation and adhesiveness to intestinal tissue was investigated by observing the adhesiveness of L. acidophilus M92 to porcine ileal epithelial cells. Removal of the S-layer proteins by extraction with 5 mol l-1 LiCl reduced autoaggregation and in vitro adhesion of this strain. CONCLUSIONS: These results demonstrate that there is relationship between autoaggregation and adhesiveness ability of L. acidophilus M92, mediated by proteinaceous components on the cell surface. SIGNIFICANCE AND IMPACT OF THE STUDY: This investigation has shown that L. acidophilus M92 has the ability to establish in the human gastrointestinal tract, which is an important determinant in the choice of probiotic strains.  相似文献   

15.
黏着斑激酶(focal adhesion kinase,FAK)是一种非受体型蛋白酪氨酸激酶,在肿瘤细胞的侵袭和转移中起着重要的作用。FAK是整合素介导的或生长因子受体诱导的调节细胞迁移的信号通路的关键组分。FAK通过与相关分子作用可以调节细胞骨架重构、胞外基质降解、细胞黏附更新以及质膜突出,进而参与肿瘤细胞的运动等多个过程,所以FAK与肿瘤发展的关系已经越来越受到重视。  相似文献   

16.
作为全球两大高发疾病—儿童中耳炎和成人慢性阻塞性肺疾病的急性加重的主要病原菌,不可分型流感嗜血杆菌(NTHi)日益受到国内外学者的关注,然而目前,NTHi感染致病的相关机制及耐药并未得到全面地阐释,在一定程度上影响了临床对NTHi感染的有效控制。该文综合分析NTHi引起的主要感染,从以黏附作用为基础的定植策略、生物膜的形成、免疫逃逸和细菌耐药4个方面对NTHi感染致病的相关机制及耐药作一综述,以期为研究NTHi疫苗和特异抗感染药物提供理论依据。  相似文献   

17.
By adsorbing poly(N-isopropylacrylamide) (PNIPAAm) from an aqueous solution onto oxidised polystyrene without the need for grafting the polymer to the surface, we showed here that cells(CHO-K1) adhere and grow well at 37 °C and are detached by lowering the temperature to 10 °C without any other deleterious treatment. Both bacterial culture grade polystyrene Petri dishes and polystyrene beads (120 to 250μm diameters) commercially available used in static conditions of growth were tested with similar results. The contact angle of modified Petri dishes with a water droplet increases from 36 to 58° when the temperature is raised from 25 to 37 °C indicating change in hydrophilicity of the surface as a function of temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
To establish a procedure for the purification of a broad spectrum of cell surface proteins, three separate methods based on different principles were compared with the aid of four marker proteins. Membrane preparation by sedimentation-flotation centrifugation, temperature-induced phase separation with Triton X-114, and lectin affinity chromatography were used separately as well as in combination. The two-step procedure of membrane preparation and lectin affinity chromatography provided by far the best enrichment of cell surface marker proteins. This result was further substantiated by screening greater than 6,600 hybridoma cultures that originated from mice that had been immunized with protein fractions obtained by different purification protocols. In addition, it was found that solubilized glycoproteins used as immunogens led to many more cell surface-specific monoclonal antibodies than glycoproteins immobilized on lectin-agarose beads. Three monoclonal antibodies that recognize distinct epitopes of cell adhesion molecules (CAMs) were isolated. Monoclonal antibody C4 bound to a detergent-labile epitope of G4 (neuron-glia CAM). Monoclonal antibody D1 recognized specifically nonreduced neural CAM (N-CAM) with intact disulfide bridges, and monoclonal antibody D3 recognized only the 180-kilodalton isoform of N-CAM. Because of these specificities, these monoclonal antibodies promise to be useful tools for the elucidation of the structural organization of adhesion molecules.  相似文献   

19.
目的:研究微创经皮钢板接骨术与Henry入路钢板内固定治疗桡骨远端骨折的疗效。方法:选取2013年2月到2014年2月我院收治的桡骨远端骨折患者86例,按照随机数字表法将患者分为Ⅰ组和Ⅱ组,每组43例,Ⅰ组患者给予微创经皮钢板接骨术治疗,Ⅱ组患者给予Henry入路钢板内固定治疗,术后随访患者1年,比较两组临床疗效。结果:Ⅰ组手术时间、术中出血量显著优于Ⅱ组,两组比较差异具有统计学意义(P0.05);Ⅰ组术后1年DASH评分显著优于Ⅱ组,两组比较差异具有统计学意义(P0.05);两组并发症比较无统计学意义(P0.05)。结论:微创经皮钢板接骨术治疗桡骨远端骨折具有较好的临床疗效,能缩短手术时间、降低术中出血量,改善患者上肢功能。  相似文献   

20.
钛合金和钴铬合金表面白色念珠菌粘附的研究   总被引:3,自引:0,他引:3  
目的比较钛合金(Ti-6Al-4V)和钴铬合金(Chromium-Cobaltalloy)表面白色念珠菌粘附能力的大小,研究表面粗糙度与细菌粘附的关系。方法将不同表面粗糙度的钛合金和钴铬合金试件进行白色念珠菌体外粘附试验,采用菌落形成计数法测定试件表面的细菌粘附量。结果各钛合金试件组的细菌粘附量均少于相同表面粗糙度的钴铬合金试件组,两种金属试件表面的细菌粘附量均随表面粗糙度的增大而增加。结论钛合金较钴铬合金更能减少由白色念珠菌引起的义齿性口炎等并发症,同时修复体表面严格的研磨抛光也能有效减少这些并发症。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号