首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
ACE chimeric proteins and N domain monoclonal antibodies (mAbs) were used to determine the influence of the N domain, and particular regions thereof, on the rate of ACE ectodomain shedding. Somatic ACE (having both N and C domains) was shed at a rate of 20%/24 h. Deletion of the C domain of somatic ACE generated an N domain construct (ACEDeltaC) which demonstrated the lowest rate of shedding (12%). However, deletion of the N domain of somatic ACE (ACEDeltaN) dramatically increased shedding (212%). Testicular ACE (tACE) having 36 amino acid residues (heavily O-glycosylated) at the N-terminus of the C domain shows a 4-fold decrease in the rate of shedding (49%) compared to that of ACEDeltaN. When the N-terminal region of the C domain was replaced with the corresponding homologous 141 amino acids of the N domain (N-delACE) the rate of shedding of the ACEDeltaN was only slightly decreased (174%), but shedding was still 3.5-fold more efficient than wild-type testicular ACE. Monoclonal antibodies specific for distinct, but overlapping, N-domain epitopes altered the rate of ACE shedding. The mAb 3G8 decreased the rate of shedding by 30%, whereas mAbs 9B9 and 3A5 stimulated ACE shedding 2- to 4-fold. Epitope mapping of these mAbs in conjunction with a homology model of ACE N domain structure, localized a region in the N-domain that may play a role in determining the relatively low rate of shedding of somatic ACE from the cell surface.  相似文献   

2.
Angiotensin-converting enzyme (ACE) exists as two isoforms: somatic ACE (sACE), comprised of two homologous N and C domains, and testis ACE (tACE), comprised of the C domain only. The N and C domains are both active, but show differences in substrate and inhibitor specificity. While both isoforms are shed from the cell surface via a sheddase-mediated cleavage, tACE is shed much more efficiently than sACE. To delineate the regions of tACE that are important in catalytic activity, intracellular processing, and regulated ectodomain shedding, regions of the tACE sequence were replaced with the corresponding N-domain sequence. The resultant chimeras C1-163Ndom-ACE, C417-579Ndom-ACE, and C583-623Ndom-ACE were processed to the cell surface of transfected Chinese hamster ovary (CHO) cells, and were cleaved at the identical site as that of tACE. They also showed acquisition of N-domain-like catalytic properties. Homology modelling of the chimeric proteins revealed structural changes in regions required for tACE-specific catalytic activity. In contrast, C164-416Ndom-ACE and C191-214Ndom-ACE demonstrated defective intracellular processing and were neither enzymatically active nor shed. Therefore, critical elements within region D164-V416 and more specifically I191-T214 are required for the processing, cell-surface targeting, and enzyme activity of tACE, and cannot be substituted for by the homologous N-domain sequence.  相似文献   

3.
Ectodomain shedding generates soluble isoforms of cell-surface proteins, including angiotensin-converting enzyme (ACE). Increasing evidence suggests that the juxtamembrane stalk of ACE, where proteolytic cleavage-release occurs, is not the major site of sheddase recognition. The role of the cytoplasmic domain has not been completely defined. We deleted the cytoplasmic domain of human testis ACE and found that this truncation mutant (ACE-DeltaCYT) was shed constitutively from the surface of transfected CHO-K1 cells. Phorbol ester treatment produced only a slight increase in shedding of ACE-DeltaCYT, unlike the marked stimulation seen with wild-type ACE. However, for both wild-type ACE and ACE-DeltaCYT, shedding was inhibited by the peptide hydroxamate TAPI and the major cleavage site was identical, indicating the involvement of similar or identical sheddases. Cytochalasin D markedly increased the basal shedding of wild-type ACE but had little effect on the shedding of ACE-DeltaCYT. These data suggest that the cytoplasmic domain of ACE interacts with the actin cytoskeleton and that this interaction is a negative regulator of ectodomain shedding.  相似文献   

4.
Protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) catalyzes the transfer of GlcNAc to O-mannose of glycoproteins. Mutations in the POMGnT1 gene cause a type of congenital muscular dystrophy called muscle-eye-brain disease (MEB). We evaluated several truncated mutants of POMGnT1 to determine the minimal catalytic domain. Deletions of 298 amino acids in the N-terminus and 9 amino acids in the C-terminus did not affect POMGnT1 activity, while larger deletions on either end abolished activity. These data indicate that the minimal catalytic domain is at least 353 amino acids. Single amino acid substitutions in the stem domain of POMGnT1 from MEB patients abolished the activity of the membrane-bound form but not the soluble form. This suggests that the stem domain of the soluble form of POMGnT1 is unnecessary for activity, but that some amino acids play a crucial role in the membrane-bound form.  相似文献   

5.
Heparin-binding EGF-like growth factor (HB-EGF) is synthesized as a transmembrane precursor protein that is anchored to the plasma membrane. The extracellular EGF-like domain acts as a mitogen and motogen upon ectodomain shedding, but the functional roles of the transmembrane and cytoplasmic domains are largely unknown. We demonstrate here that cytoplasmic domain of HB-EGF is phosphorylated by external stimuli, and that the phosphorylation site is involved in HB-EGF-dependent tumorigenesis. Treatment of Vero cells overexpressing human HB-EGF with 12-O-tetradecanoylphorbol-13-acetate (TPA) caused ectodomain shedding of HB-EGF and generated two carboxyl (C)-terminal fragments with distinct electrophoretic mobilities. Mutation analysis showed that Ser207 in the cytoplasmic domain of HB-EGF is phosphorylated upon TPA stimulation, generating two C-terminal fragments with distinct phosphorylation states. Treatment of cells with lysophosphatidic acid, anisomycin, and calcium ionophore, all of which are known to induce ectodomain shedding, also caused phosphorylation of HB-EGF. Although ectodomain shedding and phosphorylation of HB-EGF occurred coordinately, Ala substitution of Ser207 had no effect on TPA-induced or constitutive ectodomain shedding. Injection of cells overexpressing HB-EGF into nude mice showed that Ala substitution of Ser207 reduced the tumorigenic activity of HB-EGF, even though the cell surface level and ectodomain shedding of HB-EGF were not affected by the mutation. Moreover, we found that the cytoplasmic domain of another EGFR ligand, transforming growth factor-alpha, is phosphorylated upon TPA stimulation. Thus, the present results suggest a novel role for the cytoplasmic domain of HB-EGF and other EGF family growth factors that is regulated by phosphorylation.  相似文献   

6.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a type I transmembrane MMP shown to play a critical role in normal development and in malignant processes. Emerging evidence indicates that MT1-MMP is regulated by a process of ectodomain shedding. Active MT1-MMP undergoes autocatalytic processing on the cell surface, leading to the formation of an inactive 44-kDa fragment and release of the entire catalytic domain. Analysis of the released MT1-MMP forms in various cell types revealed a complex pattern of shedding involving two major fragments of 50 and 18 kDa and two minor species of 56 and 31-35 kDa. Protease inhibitor studies and a catalytically inactive MT1-MMP mutant revealed both autocatalytic (18 kDa) and non-autocatalytic (56, 50, and 31-35 kDa) shedding mechanisms. Purification and sequencing of the 18-kDa fragment indicated that it extends from Tyr(112) to Ala(255). Structural and sequencing data indicate that shedding of the 18-kDa fragment is initiated at the Gly(284)-Gly(285) site, followed by cleavage between the conserved Ala(255) and Ile(256) residues near the conserved methionine turn, a structural feature of the catalytic domain of all MMPs. Consistently, a recombinant 18-kDa fragment had no catalytic activity and did not bind TIMP-2. Thus, autocatalytic shedding evolved as a specific mechanism to terminate MT1-MMP activity on the cell surface by disrupting enzyme integrity at a vital structural site. In contrast, functional data suggest that the non-autocatalytic shedding generates soluble active MT1-MMP species capable of binding TIMP-2. These studies suggest that ectodomain shedding regulates the pericellular and extracellular activities of MT1-MMP through a delicate balance of active and inactive enzyme-soluble fragments.  相似文献   

7.
Ectodomain shedding of cell surface membrane-anchoring proteins is an important process in a wide variety of physiological events(1, 2). Tumor necrosis factor alpha (TNF-alpha) converting enzyme (TACE) is the first discovered mammalian sheddase responsible for cleavage of several important surface proteins, including TNF-alpha, TNF p75 receptor, L-selectin, and transforming growth factor-a. Phorbol myristate acetate (PMA) has long been known as a potent agent to enhance ectodomain shedding. However, it is not fully understood how PMA activates TACE and induces ectodomain shedding. Here, we demonstrate that PMA induces both reactive oxygen species (ROS) generation and TNF p75 receptor shedding in Mono Mac 6 cells, a human monocytic cell line, and l-selectin shedding in Jurkat T-cells. ROS scavengers significantly attenuated PMA-induced TNF p75 receptor shedding. Exogenous H2O2 mimicked PMA-induced enhancement of ectodomain shedding, and H2O2-induced shedding was blocked by TAPI, a TACE inhibitor. Furthermore, both PMA and H2O2 failed to cause ectodomain shedding in a cell line that lacks TACE activity. By use of an in vitro TACE cleavage assay, H2O2 activated TACE that had been rendered inactive by the addition of the TACE inhibitory pro-domain sequence. We presume that the mechanism of TACE activation by H2O2 is due to an oxidative attack of the pro-domain thiol group and disruption of its inhibitory coordination with the Zn++ in the catalytic domain of TACE. These results demonstrate that ROS production is involved in PMA-induced ectodomain shedding and implicate a role for ROS in other shedding processes.  相似文献   

8.
Chattopadhyay S  Karan G  Sen I  Sen GC 《Biochemistry》2008,47(32):8335-8341
Both germinal and somatic isoforms of ACE are type I ectoproteins expressed on the cell surface from where the enzymatically active ectodomains are released to circulation by a regulated cleavage-secretion process. Our previous studies have shown that ACE-secretase activity is regulated by the ACE distal ectodomain and not by sequences at or around the cleavage site. In the current study we have identified that the ACE residues encompassing 343 to 655 of the germinal form are needed for its cleavage-secretion. To narrow down this region further, we have examined the cleavage-secretion of ACE-CD4 chimeric proteins in mammalian cells and Pichia pastoris. These experiments identified five residues (HGEKL) in the ACE region of the chimeric proteins that were essential for their cleavage-secretion. When the corresponding residues were substituted by alanine in native germinal and somatic ACE, the mutant proteins were not cleaved, although they were displayed on the cell surface and enzymatically active. These results demonstrated that a small region in the ectodomain of ACE is required for its cleavage at the juxtamembrane domain. This conclusion was further supported by our observation that secreted ACE inhibited cell-bound ACE cleavage-secretion, although the secreted form did not contain the cleavage site.  相似文献   

9.
Zinc-dependent metalloproteases can mediate the shedding of the extracellular domain of many unrelated transmembrane proteins from the cell surface. In most instances, this process, also known as ectodomain shedding, is regulated via protein kinase C (PKC). The tumor necrosis factor alpha-converting enzyme (TACE) was the first protease involved in regulated protein ectodomain shedding identified. Although TACE belongs to the family of metalloprotease-disintegrins, few members of this family have been shown to participate in regulated ectodomain shedding. In fact, the phenotype of tace-/- cells and that of Chinese hamster ovary cell mutants defective in ectodomain shedding points to the existence of a common PKC-activated ectodomain shedding system, whose proteolytic component is TACE, that acts on a variety of transmembrane proteins. Examples of these proteins include the Alzheimer's disease-related protein beta-amyloid precursor protein (betaAPP) and the transmembrane growth factors protransforming growth factor-alpha (pro-TGF-alpha) and, as shown in this report, proheparin-binding epidermal growth factor-like growth factor (pro-HB-EGF). Here we show that the mercurial compound 4-aminophenylmercuric acetate (APMA), frequently used to activate in vitro recombinant matrix metalloproteases, is an activator of the shedding of betaAPP, pro-HB-EGF, and pro-TGF-alpha. Treatment of tace-/- cells or Chinese hamster ovary shedding-defective mutants with APMA activates the cleavage of pro-TGF-alpha but not that of pro-HB-EGF or betaAPP, indicating that APMA activates TACE and also a previously unacknowledged proteolytic activity specific for pro-TGF-alpha. Characterization of this proteolytic activity indicates that it acts on pro-TGF-alpha located at the cell surface and that it is a metalloprotease active in cells defective in furin activity. In summary, treatment of shedding-defective cell lines with APMA unveils the existence of a metalloprotease activity alternative to TACE with the ability to specifically shed the ectodomain of pro-TGF-alpha.  相似文献   

10.
11.
The ectodomains of many proteins located at the cell surface are shed upon cell stimulation. One such protein is the heparin-binding EGF-like growth factor (HB-EGF) that exists in a membrane-anchored form which is converted to a soluble form upon cell stimulation with TPA, an activator of protein kinase C (PKC). We show that PKCdelta binds in vivo and in vitro to the cytoplasmic domain of MDC9/meltrin-gamma/ADAM9, a member of the metalloprotease-disintegrin family. Furthermore, the presence of constitutively active PKCdelta or MDC9 results in the shedding of the ectodomain of proHB-EGF, whereas MDC9 mutants lacking the metalloprotease domain, as well as kinase-negative PKCdelta, suppress the TPA-induced shedding of the ectodomain. These results suggest that MDC9 and PKCdelta are involved in the stimulus-coupled shedding of the proHB-EGF ectodomain.  相似文献   

12.
Angiotensin-converting enzyme-2 (ACE2) is a critical regulator of heart function and a cellular receptor for the causative agent of severe-acute respiratory syndrome (SARS), SARS-CoV (coronavirus). ACE2 is a type I transmembrane protein, with an extracellular N-terminal domain containing the active site and a short intracellular C-terminal tail. A soluble form of ACE2, lacking its cytosolic and transmembrane domains, has been shown to block binding of the SARS-CoV spike protein to its receptor. In this study, we examined the ability of ACE2 to undergo proteolytic shedding and investigated the mechanisms responsible for this shedding event. We demonstrated that ACE2, heterologously expressed in HEK293 cells and endogenously expressed in Huh7 cells, undergoes metalloproteinase-mediated, phorbol ester-inducible ectodomain shedding. By using inhibitors with differing potency toward different members of the ADAM (a disintegrin and metalloproteinase) family of proteases, we identified ADAM17 as a candidate mediator of stimulated ACE2 shedding. Furthermore, ablation of ADAM17 expression using specific small interfering RNA duplexes reduced regulated ACE2 shedding, whereas overexpression of ADAM17 significantly increased shedding. Taken together, these data provided direct evidence for the involvement of ADAM17 in the regulated ectodomain shedding of ACE2. The identification of ADAM17 as the protease responsible for ACE2 shedding may provide new insight into the physiological roles of ACE2.  相似文献   

13.
CD93 is a highly glycosylated transmembrane protein expressed on monocytes, neutrophils, endothelial cells, and stem cells. Antibodies directed at CD93 modulate phagocytosis, and CD93-deficient mice are defective in the clearance of apoptotic cells from the inflamed peritoneum. In this study we observe that CD93, expressed on human monocytes and neutrophils, is susceptible to phorbol dibutyrate-induced protein ectodomain shedding in a time- and dose-dependent manner. The soluble fragment found in culture supernatant retains the N-terminal carbohydrate recognition domain and the epidermal growth factor repeats after ectodomain cleavage. Importantly, a soluble form of the CD93 ectodomain was detected in human plasma, demonstrating that shedding is a physiologically relevant process. Inhibition of metalloproteinases with 1,10-phenanthroline inhibited shedding, but shedding was independent of TNF-alpha-converting enzyme (a disintegrin and metalloproteinase 17). Phorbol dibutyrate-induced CD93 shedding on monocytes was accompanied by decreased surface expression, whereas neutrophils displayed an increase in surface expression, suggesting that CD93 shed from the neutrophil surface was rapidly replaced by CD93 from intracellular stores. Cross-linking CD93 on human monocytes with immobilized anti-CD93 mAbs triggered shedding, as demonstrated by a decrease in cell-associated, full-length CD93 concomitant with an increase in CD93 intracellular domain-containing cleavage products. In addition, the inflammatory mediators, TNF-alpha and LPS, stimulated ectodomain cleavage of CD93 from monocytes. These data demonstrate that CD93 is susceptible to ectodomain shedding, identify multiple stimuli that trigger shedding, and identify both a soluble form of CD93 in human plasma and intracellular domain containing cleavage products within cells that may contribute to the physiologic role of CD93.  相似文献   

14.
Tumor necrosis factor-alpha converting enzyme (TACE), a multidomain protease essential for development and disease, releases the ectodomains from many transmembrane proteins in a regulated fashion. To understand the mechanism underlying the regulation of TACE activity, we sought to identify the cause of ectodomain shedding deficiencies in two mutated CHO sublines designated M1 and M2. Transfection of expression vectors for human and mouse TACE restored ectodomain shedding of TNF-alpha and TGF-alpha, suggesting that defects in the TACE gene contribute to the phenotype of M1 and M2 cells. The overall levels of endogenous TACE forms in M1 cells were significantly lower than those found in their parental cells, whereas only TACE zymogen, but not its mature form, was detectable in M2 cells. Molecular analyses suggested that M1 cells contained only one expressible TACE allele encoding an M435I point mutation in the catalytic center of the protease, and M2 cells produced two TACE variants with distinct point mutations in the catalytic domain (C225Y) and the cysteinerich/disintegrin domain (C600Y). Overexpression of the C225Y and C600Y TACE by transient transfection largely compensated for maturation defects in the variants but failed to restore TNF-alpha and TGF-alpha release in the shedding-defective CHO cell lines and fibroblasts derived from TACE-null mouse embryo. Further mutagenesis and functional analyses demonstrated that Cys(600) was absolutely essential for ectodomain shedding, suggesting that Cys(600), similar to Cys(225), participates in disulfide bonding, which is critical for both the processing and catalysis of TACE.  相似文献   

15.
Matriptase-2 is a hepatic membrane serine protease that regulates iron homeostasis. Defects in matriptase-2 cause iron deficiency anemia. In cells, matriptase-2 is synthesized as a zymogen. To date, how matriptase-2 expression and activation are regulated remains poorly understood. Here we expressed human matriptase-2 in HEK293 and hepatic BEL-7402, SMMC-7721, and QGY-7703 cells. By labeling cell surface proteins and Western analysis, we examined matriptase-2 cell surface expression, zymogen activation, and ectodomain shedding. Our results show that matriptase-2 was activated on the cell surface but not intracellularly. Activated matriptase-2 underwent ectodomain shedding, producing soluble fragments in the conditioned medium. By testing inactive mutants, R576A and S762A, we found that matriptase-2 activation and shedding were mediated by its own catalytic activity and that the one-chain form of matriptase-2 had little activity in ectodomain shedding. We made additional matriptase-2 mutants, N136Q, N184Q, N216Q, N338Q, N433Q, N453Q, and N518Q, in which each of the predicted N-glycosylation sites was mutated. All of these mutants were expressed on the cell surface. However, mutants N216Q, N453Q, and N518Q, but not the other mutants, had impaired zymogen activation and ectodomain shedding. Our results indicate that N-glycans at specific sites are critical for matriptase-2 activation. Together, these data provide new insights into the cell surface expression, zymogen activation, and ectodomain shedding of matriptase-2.  相似文献   

16.
Protein ectodomain shedding, the proteolytic release of the extracellullar domain of membrane-tethered proteins, can dramatically affect the function of cell surface receptors, growth factors, cytokines, and other proteins. In this study, we evaluated the activities involved in ectodomain shedding of p75NTR, a neurotrophin receptor with critical roles in neuronal differentiation and survival. p75NTR is shed in a variety of cell types, including dorsal root ganglia cells and PC12 cells. In Chinese hamster ovary cells, inhibitors of the MEK/ERK and p38 MAP kinase pathways uncovered distinct signaling pathways required for the constitutive and stimulated shedding of p75NTR. Stimulated p75NTR shedding is abrogated in M2 mutant Chinese hamster ovary cells that lack functional tumor necrosis factor-alpha converting enzyme (TACE, also referred to as ADAM17) and in cells isolated from adam17-/- mice, but not in cells from adam9/12/15-/- or adam10-/- mice. Stimulated p75(NTR) shedding is strongly reduced by deletion of 15 amino acid residues in its extracellular membrane-proximal stalk domain. However, similar to other shed proteins, point mutations and overlapping shorter deletions within this region have little or no effect on shedding. Because ectodomain shedding of p75NTR releases a soluble ectodomain and could also be a prerequisite for its regulated intramembrane proteolysis, these findings may have important implications for the functional regulation of p75NTR.  相似文献   

17.
Numerous transmembrane proteins, including the blood pressure regulating angiotensin converting enzyme (ACE) and the Alzheimer's disease amyloid precursor protein (APP), are proteolytically shed from the plasma membrane by metalloproteases. We have used an antisense oligonucleotide (ASO) approach to delineate the role of ADAM10 and tumour necrosis factor-alpha converting enzyme (TACE; ADAM17) in the ectodomain shedding of ACE and APP from human SH-SY5Y cells. Although the ADAM10 ASO and TACE ASO significantly reduced (> 81%) their respective mRNA levels and reduced the alpha-secretase shedding of APP by 60% and 30%, respectively, neither ASO reduced the shedding of ACE. The mercurial compound 4-aminophenylmercuric acetate (APMA) stimulated the shedding of ACE but not of APP. The APMA-stimulated secretase cleaved ACE at the same Arg-Ser bond in the juxtamembrane stalk as the constitutive secretase but was more sensitive to inhibition by a hydroxamate-based compound. The APMA-activated shedding of ACE was not reduced by the ADAM10 or TACE ASOs. These results indicate that neither ADAM10 nor TACE are involved in the shedding of ACE and that APMA, which activates a distinct ACE secretase, is the first pharmacological agent to distinguish between the shedding of ACE and APP.  相似文献   

18.
Angiotensin-converting enzyme-2 (ACE2) is a regulatory protein of the renin-angiotensin system (RAS) and a receptor for the causative agent of severe-acute respiratory syndrome (SARS), the SARS-coronavirus. We have previously shown that ACE2 can be shed from the cell surface in response to phorbol esters by a process involving TNF-α converting enzyme (TACE; ADAM17). In this study, we demonstrate that inhibitors of calmodulin also stimulate shedding of the ACE2 ectodomain, a process at least partially mediated by a metalloproteinase. We also show that calmodulin associates with ACE2 and that this interaction is decreased by calmodulin inhibitors.  相似文献   

19.
USP25m is the muscle isoform of the deubiquitinating (DUB) enzyme USP25. Similarly to most DUBs, data on USP25 regulation and substrate recognition is scarce. In silico analysis predicted three ubiquitin binding domains (UBDs) at the N-terminus: one ubiquitin-associated domain (UBA) and two ubiquitin-interacting motifs (UIMs), whereas no clear structural homology at the extended C-terminal region outside the catalytic domains were detected. In order to asses the contribution of the UBDs and the C-terminus to the regulation of USP25m catalytic activity, ubiquitination state and substrate interaction, serial and combinatorial deletions were generated. Our results showed that USP25m catalytic activity did not strictly depend on the UBDs, but required a coiled-coil stretch between amino acids 679 to 769. USP25 oligomerized but this interaction did not require either the UBDs or the C-terminus. Besides, USP25 was monoubiquitinated and able to autodeubiquitinate in a possible loop of autoregulation. UBDs favored the monoubiquitination of USP25m at the preferential site lysine 99 (K99). This residue had been previously shown to be a target for SUMO and this modification inhibited USP25 activity. We showed that mutation of K99 clearly diminished USP25-dependent rescue of the specific substrate MyBPC1 from proteasome degradation, thereby supporting a new mechanistic model, in which USP25m is regulated through alternative conjugation of ubiquitin (activating) or SUMO (inhibiting) to the same lysine residue (K99), which may promote the interaction with distinct intramolecular regulatory domains.  相似文献   

20.
L-selectin (CD62L), a lectin-like adhesion molecule, mediates lymphocyte homing and leukocyte accumulation at sites of inflammation. Its transmembrane (TM) and intracellular (IC) domains confer clustering of L-selectin on microvilli of resting leukocytes, which is important for L-selectin function. Following activation of protein kinase C (PKC) or calmodulin inhibition, the wild-type (WT) protein is rapidly cleaved in its membrane-proximal ectodomain. To examine whether L-selectin topography or TM/IC domains are involved in this shedding process, we used stable transfectants expressing WT L-selectin (on microvilli) or chimeric molecules consisting of the L-selectin ectodomain linked to the TM/IC domains of CD44 (excluded from microvilli) or CD31 (randomly distributed). PKC activation by PMA altered the cells' surface morphology, but did not induce a redistribution of L-selectin ectodomains. All cell lines shed ectodomains upon PMA activation in a dose-dependent fashion and with similar kinetics. Calmodulin inhibition by trifluoperazine induced shedding in both WT and chimera transfectants. At high trifluoperazine concentrations, shedding of WT L-selectin was significantly more pronounced than that of chimeric molecules. Regardless of the activating stimulus, shedding was blocked by a hydroxamate-based metalloprotease inhibitor, suggesting that ectodomain down-regulation occurred through proteolytic cleavage by identical protease(s). These results show that the recognition site(s) for PKC-induced L-selectin shedding is exclusively contained within the ectodomain; the nature of subsurface structures and surface topography are irrelevant. Shedding induced by calmodulin inhibition has two components: one requires the L-selectin TM/IC domain, and the other is independent of it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号