首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To test the hypothesis that children store less CO2 than adults during exercise, we measured breath 13CO2 washout dynamics after oral bolus of [13C]bicarbonate in nine children [8 +/- 1 (SD) yr, 4 boys] and nine (28 +/- 6 yr, 5 males) adults. Gas exchange [O2 uptake and CO2 production (Vco2)] was measured breath by breath during rest and during light (80% of the anaerobic threshold) intermittent exercise. Breath samples were obtained for subsequent analysis of 13CO2 by isotope ratio mass spectrometry. The tracer estimate of Vco2 was highly correlated to Vco2 measured by gas exchange (r = 0.97, P < 0.0001). The mean residence time was shorter in children (50 +/- 5 min) compared with adults (69 +/- 7 min, P < 0.0001) at rest and during exercise (children, 35 +/- 7 min; adults, 50 +/- 11 min, P < 0.001). The estimate of stored CO2 (using mean Vco2 measured by gas exchange and mean residence time derived from tracer washout) was not statistically different at rest between children (254 +/- 36 ml/kg) and adults (232 +/- 37 ml/kg). During exercise, CO2 stores in the adults (304 +/- 46 ml/kg) were significantly increased over rest (P < 0.001), but there was no increase in children (mean exercise value, 254 +/- 38 ml/kg). These data support the hypothesis that CO2 distribution in response to exercise changes during the growth period.  相似文献   

2.
3.
We tested the hypothesis that, in humans, hyperthermic hyperpnea elicited in resting subjects differs from that elicited during submaximal, moderate-intensity exercise. In the rest trial, hot-water legs-only immersion and a water-perfused suit were used to increase esophageal temperature (T(es)) in 19 healthy male subjects; in the exercise trial, T(es) was increased by prolonged submaximal cycling [50% peak O(2) uptake (Vo(2))] in the heat (35 degrees C). Minute ventilation (Ve), ventilatory equivalent for Vo(2) (Ve/Vo(2)) and CO(2) output (Ve/Vco(2)), tidal volume (Vt), and respiratory frequency (f) were plotted as functions of T(es). In the exercise trial, Ve increased linearly with increases (from 37.0 to 38.7 degrees C) in T(es) in all subjects; in the rest trial, 14 of the 19 subjects showed a T(es) threshold for hyperpnea (37.8 +/- 0.5 degrees C). Above the threshold for hyperpnea, the slope of the regression line relating Ve and T(es) was significantly greater for the rest than the exercise trial. Moreover, the slopes of the regression lines relating Ve/Vo(2), Ve/Vco(2), and T(es) were significantly greater for the rest than the exercise trial. The increase in Ve reflected increases in Vt and f in the rest trial, but only f in the exercise trial, after an initial increase in ventilation due to Vt. Finally, the slope of the regression line relating T(es) and Vt or f was significantly greater for the rest than the exercise trial. These findings indicate that hyperthermic hyperpnea does indeed differ, depending on whether one is at rest or exercising at submaximal, moderate intensity.  相似文献   

4.
The possible role of intrapulmonary CO2 receptors (IPC) in arterial CO2 partial pressure (PaCO2) homeostasis was investigated by comparing the arterial blood gas and ventilatory responses to CO2 loading via the inspired gas and via the venous blood. Adult male Pekin ducks were decerebrated 1 wk prior to an experiment. Venous CO2 loading was accomplished with a venovenous extracorporeal blood circuit that included a silicone-membrane blood oxygenator. The protocol randomized four states: control (no loading), venous CO2 loading, inspired CO2 loading, and venous CO2 unloading. Intravenous and inspired loading both resulted in hypercapnic hyperpnea. Comparison of the ventilatory sensitivity (delta VE/delta PaCO2) showed no significant difference between the two loading regimes. Likewise, venous CO2 unloading led to a significant hypocapnic hypopnea. Sensitivity to changes in PaCO2 could explain the response of ventilation under these conditions. The ventilatory pattern, however, was differentially sensitive to the route of CO2 loading; inspired CO2 resulted in slower deeper breathing than venous loading. It is concluded that IPC play a minor role in adjusting ventilation to match changes in pulmonary CO2 flux but rather are involved in pattern determination.  相似文献   

5.
Bronchoconstriction elicited by isocapnic hyperpnea in guinea pigs   总被引:4,自引:0,他引:4  
We demonstrated spontaneous self-limited bronchoconstriction after eucapnic dry gas hyperpnea in 22 anesthetized, mechanically ventilated guinea pigs pretreated with propranolol (1 mg/kg iv). Eucapnic hyperpnea "challenges" of room temperature dry or humidified gas (5% CO2-95% O2) were performed by mechanically ventilating animals (150 breaths/min, 3-6 ml tidal volume) for 5 min. During a "recovery" period after hyperpnea, animals were returned to standard ventilation conditions (6 ml/kg, 60 breaths/min, 50% O2 in air, fully saturated at room temperature). After dry gas hyperpnea (5 ml, 150 breaths/min), respiratory system resistance (Rrs) increased in the recovery period by 7.7-fold and dynamic compliance (Cdyn) decreased by 79.7%; changes were maximal at approximately 3 min posthyperpnea and spontaneously returned to base line in 10-40 min. This response was markedly attenuated by humidification of inspired air. Four consecutive identical dry air challenges resulted in similar posthyperpnea responses in four animals. Increasing the minute ventilation during hyperpnea (by varying tidal volume from 3 to 6 ml) caused increased bronchoconstriction in a dose-dependent fashion in six animals. Neither vagotomy nor atropine altered the airway response to dry gas hyperpnea. We conclude that dry gas hyperpnea in anesthetized guinea pigs results in a bronchoconstrictor response that shares five similar features with hyperpnea-induced bronchoconstriction in human asthma: 1) time course of onset and spontaneous resolution, 2) diminution with humidification of inspired gas, 3) reproducibility on consecutive identical challenges, 4) stimulus-response relationship with minute ventilation during hyperpnea, and 5) independence of parasympathetic neurotransmission.  相似文献   

6.
Increasing minute ventilation of dry gas shifts the principal burden of respiratory heat and water losses from more proximal airway to airways farther into the lung. If these local thermal transfers determine the local stimulus for bronchoconstriction, then increasing minute ventilation of dry gas might also extend the zone of airway narrowing farther into the lung during hyperpnea-induced bronchoconstriction (HIB). We tested this hypothesis by comparing tantalum bronchograms in tracheostomized guinea pigs before and during bronchoconstriction induced by dry gas hyperpnea, intravenous methacholine, and intravenous capsaicin. In eight animals subjected to 5 min of dry gas isocapnic hyperpnea [tidal volume (VT) = 2-5 ml, 150 breaths/min], there was little change in the diameter of the trachea or the main stem bronchi up to 0.75 cm past the main carina (zone 1). In contrast, bronchi from 0.75 to 1.50 cm past the main carina (zone 2) narrowed progressively at all minute ventilations greater than or equal to 300 ml/min (VT = 2 ml). More distal bronchi (1.50-3.10 cm past the main carina; zone 3) did not narrow significantly until minute ventilation was raised to 450 ml/min (VT = 3 ml). The estimated VT during hyperpnea needed to elicit a 50% reduction in airway diameter was significantly higher in zone 3 bronchi [4.3 +/- 0.8 (SD) ml] than in zone 2 bronchi (3.5 +/- 1.1 ml, P less than 0.012).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To determine whether the acute ventilatory responses to inhaled cigarette smoke are affected by a difference in nicotine level, control cigarettes (low-nicotine research cigarettes) were laced with nicotine to generate an increase of 330% (mean) in nicotine content with little or no change in the levels of other smoke constituents. Acute ventilatory responses to both control and nicotine-laced cigarettes were determined and compared in six awake chronic dogs. Spontaneous inhalation of nicotine-laced cigarette smoke (10% concn, 750 ml vol) via a tracheostomy tube caused distinct and consistent changes in breathing pattern on the first or second breath of inhaled smoke: an apnea in three dogs, an augmented inspiration in two dogs, and rapid shallow breathing in one dog. No significant change in breathing pattern was found immediately following inhalation of control cigarette smoke. Both types of cigarettes caused a delayed hyperpnea. However, the increase in minute ventilation induced by nicotine-laced cigarettes (from a base line of 2.8 to a peak of 25.7 l/min) was significantly greater than that by control cigarettes (from 2.9 to 5.5 l/min). Results of this study suggest that nicotine is responsible for the elicitation of both the immediate and delayed ventilatory responses to inhaled cigarette smoke generated under our experimental conditions.  相似文献   

8.
The effect of decreased lung volume on ventilatory responses to arteriovenous fistula-induced increased cardiac output was studied in four chronic awake dogs. Lung volume decreases were imposed by application of continuous negative-pressure breathing of -10 cmH2O to the trachea. The animals were surgically prepared with chronic tracheostomy, indwelling carotid artery catheter, and bilateral arteriovenous femoral shunts. Control arteriovenous blood flow was 0.5 l/min, and test flow level was 2.0 l/min. Arterial blood CO2 tension (PaCO2) was continuously monitored using an indwelling Teflon membrane mass spectrometer catheter, and inhaled CO2 was given to maintain isocapnia throughout. Increased fistula flow alone led to a mean 52% increase in cardiac output (CO), whereas mean systemic arterial blood pressure (Psa) fell 4% (P less than 0.01). Negative-pressure breathing alone raised Psa by 3% (P less than 0.005) without a significant change in CO. Expired minute ventilation (VE) increased by 27% (P less than 0.005) from control in both of these conditions separately. Combined increased flow and negative pressure led to a 50% increase in CO and 56% increase in VE (P less than 0.0025) without any significant change in Psa. Effects of decreased lung volume and increased CO appeared to be additive with respect to ventilation and to occur under conditions of constant PaCO2 and Psa. Because both decreased lung volume and increased CO occur during normal exercise, these results suggest that mechanisms other than chemical regulation may play an important role in the control of breathing and contribute new insights into the isocapnic exercise hyperpnea phenomenon.  相似文献   

9.
To investigate the contribution of vascular and metabolic stimuli to the sustained hyperpnea after exercise, the respiratory effects of obstructing and then releasing the femoral blood flow were recorded in 15 normal volunteers during recovery from steady-state cycle exercise (80 W). Obstruction was achieved using cuffs around the upper thighs, inflated for the first 2 min of recovery to a pressure of 200 mmHg. Cuff inflation significantly reduced ventilation during recovery compared with control (P less than 0.001); the subsequent release of pressure was accompanied by an increase in ventilation (averaging 3.2 l/min), which began on the first breath after release. This preceded a rise in end-tidal CO2 (maximum 8.3 Torr increase), which first became significant on the fourth breath after release and led to a further rise in ventilation. The first-breath increase in ventilation after cuff release persisted, although slightly attenuated (averaging 2.5 l/min), in additional experiments with inspired O2 fraction of 1.0. The pattern of ventilatory response was also similar when the experiments were performed with 5% CO2 in air as the inspirate. The immediate rise in ventilation on cuff release, together with the persistent response on 100% O2, suggests that the vascular changes resulting from cuff release exert an influence on ventilation independent of the effects of released metabolites on the known chemoreceptors. The persistence of the response on 5% CO2 indicates that CO2-sensitive lung afferents do not have a major role in these responses.  相似文献   

10.
To determine the importance of nonhumoral drives to exercise hyperpnea in birds, we exercised adult White Pekin ducks on a treadmill (3 degrees incline) at 1.44 km X h-1 for 15 min during unidirectional artificial ventilation. Intrapulmonary gas concentrations and arterial blood gases could be regulated with this ventilation procedure while allowing ventilatory effort to be measured during both rest and exercise. Ducks were ventilated with gases containing either 4.0 or 5.0% CO2 in 19% O2 (balance N2) at a flow rate of 12 l X min-1. At that flow rate, arterial CO2 partial pressure (PaCO2) could be maintained within +/- 2 Torr of resting values throughout exercise. Arterial O2 partial pressure did not change significantly with exercise. Heart rate, mean arterial blood pressure, and mean right ventricular pressure increased significantly during exercise. On the average, minute ventilation (used as an indicator of the output from the central nervous system) increased approximately 400% over resting levels because of an increase in both tidal volume and respiratory frequency. CO2-sensitivity curves were obtained for each bird during rest. If the CO2 sensitivity remained unchanged during exercise, then the observed 1.5 Torr increase in PaCO2 during exercise would account for only about 6% of the total increase in ventilation over resting levels. During exercise, arterial [H+] increased approximately 4 nmol X l-1; this increase could account for about 18% of the total rise in ventilation. We conclude that only a minor component of the exercise hyperpnea in birds can be accounted for by a humoral mechanism; other factors, possibly from muscle afferents, appear responsible for most of the hyperpnea observed in the running duck.  相似文献   

11.
We studied the role of central command mediation of exercise hyperpnea by comparing the ventilatory and arterial CO2 partial pressure (PaCO2) responses to voluntary (ExV) and electrically induced (ExE) muscle contractions in normal, awake human subjects. We hypothesized that if central command signals are critical to a normal ventilatory response, then ExE should cause a slower ventilatory response resulting in hypercapnia at the onset of exercise. ExE was induced through surface electrodes placed over the quadriceps and hamstring muscles. ExE and ExV produced leg extension (40/min) against a spring load that increased CO2 production (VCO2) 100-1,000 ml/min above resting level. PaCO2 and arterial pH during work transitions and in the steady state did not differ significantly from rest (P greater than 0.05) or between ExE and ExV. The temporal pattern of ventilation, tidal volume, breathing frequency, and inspired and expired times, and the ventilation-VCO2 relationship were similar between ExE and ExV. We conclude that since central command was reduced and/or eliminated by ExE, central command is not requisite for the precise matching of alveolar ventilation to increases in VCO2 during low-intensity muscle contractions.  相似文献   

12.
The ventilatory responses to steady-state venous CO2 loading (iv CO2) and CO2 inhalation have been observed in chloralose-urethan-anesthetized dogs. Intravenous CO2 was administered by increasing the CO2 fraction of gas ventilating a membrane gas exchanger in an arteriovenous bypass; blood flow rate was fixed at 30 ml/min. During the study, we identified a time-dependent hyperventilation in all 14 experimentally treated dogs and in 4 additional sham-treated dogs. When we tested 8 of these animals with a protocol having small progressive increments in iv CO2 loading rate, we observed a response approaching isocapnia during iv CO2 and a large hypocapnia when we returned to control conditions. The use of a randomized protocol in 6 animals demonstrated the necessity of accounting for this systematic base-line shift, because before doing so the response depended more on the passage of time than on the nature of the CO2 load. After this analytical adjustment was made, there was no significant difference between the respiratory controller gains (delta nu E/delta Paco2) for inhaled and iv CO2.  相似文献   

13.
Breathing increases abruptly at the start of passive exercise, stimulated by afferent feedback from the moving limbs, and declines toward a steady-state hyperpnea as exercise continues. This decline has been attributed to decreased arterial CO2 levels and adaptation in afferent feedback; however, the relative importance of these two mechanisms is unknown. To address this issue, we compared ventilatory responses to 5 min of passive leg extension exercise performed on 10 awake human subjects (6 men and 4 women) in isocapnic and poikilocapnic conditions. End-tidal Pco2 decreased significantly during poikilocapnic (Delta = -1.5 +/- 0.5 Torr, P < 0.001), but not isocapnic, passive exercise. Despite this difference, the ventilatory responses to passive exercise were not different between the two conditions. Using the fast changes in ventilation at the start (5.46 +/- 0.40 l/min, P < 0.001) and end (3.72 +/- 0.33 l/min, P < 0.001) of passive exercise as measures of the drive to breathe from afferent feedback, we found a decline of 68%. We conclude that the decline in ventilation during passive exercise is due to an adaptation in the afferent feedback from the moving limbs, not a decline in CO2 levels.  相似文献   

14.
Seven human spinal cord-lesioned subjects (SPL) underwent electrically induced muscle contractions (EMC) of the quadriceps and hamstring muscles for 10 min: 5 min control, 2 min with venous return from the legs occluded, and 3 min postocclusion. Group mean changes in CO2 output compared with rest were +107 +/- 30.6, +21 +/- 25.7, and +192 +/- 37.0 (SE) ml/min during preocclusion, occlusion, and postocclusion EMC, respectively. Mean arterial CO2 partial pressure (PaCO2) obtained from catheterized radial arteries at 15- to 30-s intervals showed a significant (P less than 0.05) hypocapnia (36.2 Torr) during occlusion and a significant (P less than 0.05) hypercapnia (38.1 Torr) postocclusion relative to a group mean preocclusion EMC PaCO2 of 37.5 Torr. Relative to preocclusion EMC, expired ventilation (VE) decreased during occlusion and increased after release of occlusion. However, changes in VE always occurred after changes in end-tidal PCO2 (mean 41 s after occlusion and 10 s after release of occlusion). In the two subjects investigated during hyperoxia, the VE and PaCO2 responses to occlusion and release did not differ from normoxia. We conclude that the data do not support mediation of the EMC hyperpnea in SPL by humoral mechanisms that others have proposed for mediation of the exercise hyperpnea in spinal cord-intact humans.  相似文献   

15.
观察了高频双向喷射通气(HFTJV)时反喷驱动压和通气频率对麻醉犬CO_2排除效能的影响以及潮气量(V_T)的变化特点。结果表明:在通气频率、正喷驱动压及吸/呼比均相同时,HFTJV时的Paco_2,V_T及FRC较高频喷射通气(HFJV)时均显著降低(P<0.05),Vco_2及pH均显著升高(P<0.01),而Pao_2和气道压则无明显改变。当HFTJV的反喷驱动压从2.06,4.31增加到6.57kPa/kg时,Paco_2,Vco_2,Pao_2,V_T及FRC等均无明显改变。无论在HFJV或HFTJV时,当通气频率从60,100增加到200次/min时,Paco_2均随之升高,并与V_T呈显著负相关。结果提示,HFTJV较HFJV具有更强的CO_2排除作用,HFTJV时的CO_2排除主要受潮气量的影响。  相似文献   

16.
Dynamic responses of inspired minute ventilation, CO2 and O2 end-tidal gas fractions, and heart rate were obtained from six normal human volunteers in response to a complex dynamic exercise challenge. Subjects pedalled a chair ergometer at constant frequency. The retarding torque applied to the ergometer pedals was controlled by a low-pass-filtered pseudorandom binary sequence (fPRBS), which provided a complex, nonanticipatory exercise stimulus containing sufficient high- and low-frequency energy to excite the small signal, broadband ventilatory response. The exercise range was chosen to produce a mean level of O2 consumption at or below 50% maximum O2 consumption. Cross-covariant analysis of the fPRBS exercise with breath-by-breath ventilation provided an estimate of the dynamic (impulse) response to exercise, which contained both fast phase 1 and slow phase 2 components. The initial, phase one, hyperpnea occurred within the same breath as the exercise transition and preceded a hypocapnic response. The phase one hyperpnea represented 26% of the total ventilatory response. The secondary, phase 2, hyperpnea was delayed several breaths from the onset of phase 1. It contained slower dynamics and followed a hypercapnic response. Heart rate increased abruptly during phase 1, peaked near the phase 1-to-2 boundary, and then decreased rapidly. The experimental protocol was designed to minimize the subjective response and provide an adequate stimulus for the faster time constants. Results obtained from these experiments were consistent with a nonhumoral induced phase 1 exercise hyperpnea.  相似文献   

17.
Ventilatory responses to progressive exercise, with and without an inspiratory elastic load (14.0 cmH2O/l), were measured in eight healthy subjects. Mean values for unloaded ventilatory responses were 24.41 +/- 1.35 (SE) l/l CO2 and 22.17 +/- 1.07 l/l O2 and for loaded responses were 24.15 +/- 1.93 l/l CO2 and 20.41 +/- 1.66 l/l O2 (P greater than 0.10, loaded vs. unloaded). At levels of exercise up to 80% of maximum O2 consumption (VO2max), minute ventilation (VE) during inspiratory elastic loading was associated with smaller tidal volume (mean change = 0.74 +/- 0.06 ml; P less than 0.05) and higher breathing frequency (mean increase = 10.2 +/- 0.98 breaths/min; P less than 0.05). At levels of exercise greater than 80% of VO2max and at exhaustion, VE was decreased significantly by the elastic load (P less than 0.05). Increases in respiratory rate at these levels of exercise were inadequate to maintain VE at control levels. The reduction in VE at exhaustion was accompanied by significant decreases in O2 consumption and CO2 production. The changes in ventilatory pattern during extrinsic elastic loading support the notion that, in patients with fibrotic lung disease, mechanical factors may play a role in determining ventilatory pattern.  相似文献   

18.
To quantitate the O2 cost of maximal exercise hyperpnea, we required eight healthy adult subjects to mimic, at rest, the important mechanical components of submaximal and maximal exercise hyperpnea. Expired minute ventilation (VE), transpulmonary and transdiaphragmatic (Pdi) pressures, and end-expiratory lung volume (EELV) were measured during exercise at 70 and 100% of maximal O2 uptake. At rest, subjects were given visual feedback of their exercise transpulmonary pressure-tidal volume loop (WV), breathing frequency, and EELV, which they mimicked repeatedly for 5 min per trial over several trials, while hypocapnia was prevented. The change in total body O2 uptake (VO2) was measured and presumed to represent the O2 cost of the hyperpnea. In 61 mimicking trials with VE of 115-167 l/min and WV of 124-544 J/min, VE, WV, duty cycle of the breath, and expiratory gastric pressure (Pga) integrated with respect to time (integral of Pga.dt/min) were not different from those observed during maximum exercise. integral of Pdi.dt/min was 14% less and EELV was 6% greater during maximum exercise than during mimicking. The O2 cost measurements within a subject were reproducible over 3-12 trials (coefficient of variation +/- 10% range 5-16%). The O2 costs of hyperpnea correlated highly and positively with VE and WV and less, but significantly, with integral of Pdi.dt and integral of Pga.dt. The O2 cost of VE rose out of proportion to the increasing hyperpnea, so that between 70 and 100% of maximal VO2 delta VO2/delta VE increased 40-60% (1.8 +/- 0.2 to 2.9 +/- 0.1 ml O2/l VE) as VE doubled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Increased CO2 flow to the lung produced by increasing cardiac output (with constant PVCO2) results in hyperpnea with arterial PCO2 maintained at its control value (J. Appl. Physiol. 36: 457, 1974). To study if arterial PCO2 could be similarly regulated when CO2 flow was elevated by increasing PVCO2 (without changing cardiac output), we produced graded increases in PVCO2 (up to a mean of 69 mmHg) using an extracorporeal gas exchanger in five chloralose-urethan-anesthetized dogs. CO2 output increased up to fourfold. Ventilation increased in proportion to the additional CO2 flow to the lung with consequent regulation of arterial PCO2 at its control value. Comparable increases in VE produced by "conventional" airway loading resulted in arterial hypercapnia. The resulting CO2 response curve was similar to that found in unanesthetized dogs. We conclude that intravenous delivery of CO2 to the lung results in infinite "sensitivity" when computed as Delta VE/Delta paco2. These results provide evidence for a CO2-linked hyperpnea which is not mediated by measurable increases in mean arterial PCO2.  相似文献   

20.
We tested the hypothesis that O(2) uptake (Vo(2)) kinetics at the onset of heavy exercise would be altered in a state of muscle fatigue and prior metabolic acidosis. Eight well-trained cyclists completed two identical bouts of 6-min cycling exercise at >85% of peak Vo(2) separated by three successive bouts of 30 s of sprint cycling. Not only was baseline Vo(2) elevated after prior sprint exercises but also the time constant of phase II Vo(2) kinetics was faster (28.9 +/- 2.4 vs. 22.2 +/- 1.7 s; P < 0.05). CO(2) output (Vco(2)) was significantly reduced throughout the second exercise bout. Subsequently Vo(2) was greater at 3 min and increased less after this after prior sprint exercise. Cardiac output, estimated by impedance cardiography, was significantly higher in the first 2 min of the second heavy exercise bout. Normalized integrated surface electromyography of four leg muscles and normalized mean power frequency were not different between exercise bouts. Vo(2) and Vco(2) kinetic responses to heavy exercise were markedly altered by prior multiple sprint exercises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号