首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Caspases are key intracellular molecules in the control of apoptosis, but little is known concerning their relative contribution to the cascade of events leading to eosinophil apoptosis. We examined caspase-3, -8, and -9 activities in receptor ligation dependent apoptosis induction in the cultured eosinophils (CE). CE cultured alone for 48 hours exhibited constitutive apoptosis (12% ± 1.2). Significant (P < 0.05) enhancement of eosinophil apoptosis was observed following monoclonal antibody (Mab) treatment with CD45 (40% ± 0.7), CD95 (36% ± 1.6), or CD69 (34% ± 0.2). Caspase activity was analysed using the novel CaspaTagTM technique and flow cytometry. CE ligated with CD45 (Bra55), CD95 (Fas) and CD69 Mab resulted in caspase-3 and -9 activation after 16 hours post-ligation. This trend in caspase-3 and -9 activation continued to increase significantly through to the 20 and 24 hours time points when compared to isotype control. Activated up-stream caspase-8 was detected 16 and 20 hours after treatment with CD45, CD95 and CD69 Mab followed by a trend toward basal levels at 24 hours. Ligation of CD95 was followed by mitochondrial permeabilization, as demonstrated by marked increase in mitochondrial transmembrane potential (ΔΨm) at all time points. However, ligation with CD45 and CD69 failed to induce a change in ΔΨm at 16 hours post-treatment compared to isotype control even though there was an alteration in mitochondrial downstream-caspase activity following ligation with these Mab(s) at this time point. At 20 and 24 hours post-ligation, CD45 or CD69 induce significantly altered levels of ΔΨm. Thus, the intrinsic and extrinsic caspase pathways are involved in controlling receptor ligation-mediated apoptosis induction in human eosinophils, findings that may aid the development of a more targeted, anti inflammatory therapy for asthma.  相似文献   

2.
Expression of HSV-1 genes leads to the induction of apoptosis in human epithelial HEp-2 cells but the subsequent synthesis of infected cell protein prevents the process from killing the cells. Thus, viruses unable to produce appropriate prevention factors are apoptotic. We now report that the addition of either a pancaspase inhibitor or caspase-9-specific inhibitor prevented cells infected with an apoptotic HSV-1 virus from undergoing cell death. This result indicated that HSV-1-dependent apoptosis proceeds through the mitochondrial apoptotic pathway. However, the pancaspase inhibitor did not prevent the release of cytochrome c from mitochondria, implying that caspase activation is not required for this induction of cytochrome c release by HSV-1. The release of cytochrome c was first detected at 9 hpi while caspase-9, caspase-3 and PARP processing were detected at 12 hpi. Finally, Bax accumulated at mitochondria during apoptotic, but not wild type HSV-1 infection. Together, these findings indicate that HSV-1 blocks apoptosis by precluding mitochondrial cytochrome c release in a caspase-independent manner and suggest Bax as a target in infected human epithelial cells.  相似文献   

3.
A proposed mechanism for the cardiotoxicity of doxorubicin (DOX) involves apoptosis in cardiomyocytes. In the study described here, we investigated the molecular basis for the differences in DOX-induced toxicity in adult rat cardiomyocytes (ARCM), neonatal rat cardiomyocytes (NRCM), and rat embryonic H9c2 cardiomyoblasts. Activation of caspase-9 and -3 was considerably lower in DOX-treated ARCM as compared with NRCM and H9c2 cardiomyoblasts. Addition of cytochrome c caused the activation of caspase-9 and -3 in permeabilized NRCM and H9c2 cardiomyoblasts but not in permeabilized ARCM. Expression of proapoptotic proteins, apoptotic protease activating factor-1 (Apaf1), and procaspase-9 was significantly lower, and abundance of antiapoptotic X-linked inhibitor of apoptosis protein (XIAP) was higher in ARCM, as compared with immature cardiac cells. Despite the abundance of XIAP in ARCM, its role in the inhibition of apoptosome function was dismissed, as second mitochondria-derived activator of caspases (Smac)-N7 peptide, had no effect on caspase activation in response to cytochrome c in these cells. Adenoviral expression of Apaf1 exacerbated the activation of caspase-9 and -3 in DOX-treated NRCM, but did not increase their activities in DOX-treated ARCM. This finding points to a major difference in the apoptotic signaling between immature and adult cardiomyocytes. The mitochondrial apoptotic pathway is limited in ARCM treated with DOX.  相似文献   

4.
5.
Oxidative stress has been shown to be associated with apoptosis (programmed cell death) in a number of cell systems. We earlier reported in vitro cultured Spodoptera frugiperda (Sf9) cells as a model system to study oxidative stress induced apoptosis (J Biosciences 24 (1999) 13) and the inhibition of UV-induced apoptosis by the baculovirus antiapoptotic p35 protein that acts as a sink to sequester reactive oxygen species (Proc Natl Acad Sci USA 96 (1999) 4838). We now show that UV-induced apoptosis in Sf9 cells, is preceded by the release of mitochondrial cytochrome c into the cytosol and consequent activation of Sf-caspase-1. The inhibitory effect of different antioxidants including scavengers of oxygen radicals such as butylated hydroxyanisole (BHA), alpha tocopherol acetate, benzoate and reduced-glutathione (GSH) on ultra violet B (UVB)-induced apoptosis in cultured Sf9 cells was assessed. Both, cytochrome c release as well as Sf-caspase-1 activation was inhibited by pre-treatment with antioxidants such as BHA and alpha tocopherol acetate, suggesting that these antioxidants inhibit apoptosis by acting quite upstream in the apoptosis cascade at the mitochondrial level, as well as downstream at the caspase level.  相似文献   

6.
Stimulation of cell death is a powerful instrument in the organism’s struggle with cancer. Apoptosis represents one mode of cell death. However, in a variety of tumor cells proapoptotic mechanisms are downregulated, or not properly activated, whereas antiapoptotic mechanisms are upregulated. Mitochondria are known as key players in the regulation of apoptotic pathways. Specifically, permeabilization of the mitochondrial outer membrane and subsequent release of proapoptotic proteins from the intermembrane space are viewed as decisive events in the initiation and/or execution of apoptosis. Disruption of mitochondrial functions by anticancer drugs, which induce oxidative stress, inhibit mitochondrial respiration, or uncouple oxidative phosphorylation, can sensitize mitochondria in these cells and facilitate outer membrane permeabilization.  相似文献   

7.
Deficient activation of apoptosis signaling pathways may be responsible for treatment failure of malignant diseases. In primary leukemia samples the detection of deficient mitochondrial apoptosis signaling would enable identification of chemo-resistant cells. To investigate the key events of apoptosis at the mitochondrial level, we developed a flow cytometric method for simultaneous detection of mitochondrial cytochrome c release and caspase-3 processing using conformation sensitive monoclonal antibodies. This method proved to identify deficient mitochondrial apoptosis signaling in leukemia cells overexpressing Bcl-2 by a pattern of apoptosis resistance, deficient cytochrome c reduction and partial processing of caspase-3. In primary leukemia cells, reduction of cytochrome c and caspase-3 activation was induced by treatment with anticancer drugs in vitro. In leukemia cells of a patient with resistant disease, a pattern of deficient apoptosis signaling as in Bcl-2 transfected cells was observed, suggesting that deficient mitochondrial signaling contributed to the clinical phenotype of drug resistance in this patient. Flow cytometric analysis of mitochondrial apoptosis signaling may provide a useful tool for the prediction of drug resistance and treatment failure in primary leukemia.  相似文献   

8.
Betalains are water-soluble nitrogenous vacuolar pigments present in flowers and fruits of many caryophyllales with potent antioxidant properties. In the present study the antiproliferative effects of betanin, a principle betacyanin pigment, isolated from the fruits of Opuntia ficus-indica, was evaluated on human chronic myeloid leukemia cell line (K562). The results show dose and time dependent decrease in the proliferation of K562 cells treated with betanin with an IC(50) of 40 microM. Further studies involving scanning and transmission electron microscopy revealed the apoptotic characteristics such as chromatin condensation, cell shrinkage and membrane blebbing. Agarose electrophoresis of genomic DNA of cells treated with betanin showed fragmentation pattern typical for apoptotic cells. Flow cytometric analysis of cells treated with 40 microM betanin showed 28.4% of cells in sub G0/G1 phase. Betanin treatment to the cells also induced the release of cytochrome c into the cytosol, poly (ADP) ribose polymerase (PARP) cleavage, down regulation Bcl-2, and reduction in the membrane potentials. Confocal microscopic studies on the cells treated with betanin suggest the entry of betanin into the cells. These studies thus demonstrate that betanin induces apoptosis in K562 cells through the intrinsic pathway and is mediated by the release of cytochrome c from mitochondria into the cytosol, and PARP cleavage. The antiproliferative effects of betanin add further value to the nutritional characteristics of the fruits of O. ficus-indica.  相似文献   

9.
We previously demonstrated that caspase-3, an executioner of apoptosis, is activated in the pressure-induced apoptosis of murine erythroleukemia (MEL) cells (at 100 MPa). Here, we examined the pathway of caspase-3 activation using peptide substrates and caspase inhibitors. Using the substrates of caspases-8 and -9, it was found that both are activated in cells under high pressure. The production of nuclei with sub-G1 DNA content in 100 MPa-treated MEL cells was suppressed by inhibitors of caspases-8 and -9, and pan-caspase. In 100 MPa-treated cells, pan-caspase inhibitor partially prevented the cytochrome c release from the mitochondria and the breakdown of mitochondrial membrane potential. These results suggest that the intrinsic and extrinsic pathways are activated in apoptotic signaling during the high pressure-induced death of MEL cells.  相似文献   

10.
Functional dendritic cells (DC) are professional antigen presenting cells (APC) and can be generated in vitro from leukemic cells from acute myeloid leukemia AML patients, giving rise to APC of leukemic origin presenting leukemic antigens (DCleu). We have already shown that DC can be successfully generated from AML and myeloplastic syndromes (MDS) cells in serum-free standard medium (X-vivo + GM-CSF + IL-4 +TNF + FL) in 10–14 days. In this study, we present that DC counts generated from mononuclear cells (MNC) varied between 20% (from 55 MDS samples), 34% (from 100 AML samples) and 25% (from 38 healthy MNC samples) medium. Between 53% and 58% of DC are mature CD83+ DC. DC harvests were highest in monocytoid FAB types (AML-M4/M5, MDS-CMML) and independent from cytogenetic risk groups, demonstrating that DC-based strategies can be applied for patients with all cytogenetic risk groups. Proof of the clonal derivation of DC generated was obtained in five AML and four MDS cases with a combined FISH/immunophenotype analysis (FISH-IPA): The clonal numerical chromosome aberrations of the diseases were regularly codetectable with DC markers; however, not with all clonal cells being convertible to leukemia-derived DCleu (on average, 53% of blasts in AML or MDS). To the contrary, not all DC generated carried the clonal aberration (on average, 51% of DC). In 41 AML and 13 MDS cases with a suitable antigen expression, we could confirm FISH-IPA data by Flow cytometry: although DCleu are regularly detectable, on average only 57% of blasts in AML and 64% of blasts in MDS were converted to DCleu. After coculture with DC in mixed lymphocyte reactions (MLR), autologous T cells from AML and MDS patients proliferate and upregulate costimulatory receptors. The specific lysis of leukemic cells by autologous T cells could be demonstrated in three cases with AML in a Fluorolysis assay. In six cases with only few DCleu or few vital T cells available after the DC/MLR procedure, no lysis of allogeneic or autologous leukemic cells was seen, pointing to the crucial role of both partners in the lysis process. We conclude: (1) the generation of DC is regularly possible in AML and also in MDS under serum-free conditions. (2) Clonal/leukemia-derived DCleu can be regularly generated from MDS and AML-MNC; however, not with all blasts being converted to DCleu and not all DC generated carrying leukemic markers. We recommend to select DCleu for vaccinations or ex vivo T-cell activations to avoid contaminations with non-converted blasts and non-leukemia-derived DC and to improve the harvest of specific, anti-leukemic T cells. DC and DC-primed T cells could provide a practical strategy for the immunotherapy of AML and MDS.  相似文献   

11.
Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in many cell types. Although the involvement of caspases has been demonstrated, the mechanism leading to caspase activation remains unknown. We have studied the role of the mitochondrial pathway in aspirin-induced apoptosis. The apoptotic effect of aspirin was analyzed in different cell lines (Jurkat, MOLT-4, Raji and HL-60) showing induction of mitochondrial cytochrome c release and caspases 9, 3 and 8 processing. Furthermore, early aspirin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAD·fmk and preceded loss of mitochondrial membrane potential. Therefore, aspirin-induced apoptosis involves caspase activation through cytochrome c release.  相似文献   

12.
In this study we report that the baculovirus p35 anti-apoptotic protein prevents cell death by quenching free radicals at a very upstream step in the apoptotic pathway. Mitochondria of activated rat peritoneal macrophages as well as Spodoptera frugiperda (Sf9) insect cells, following treatment with oxidants, H(2)O(2)/UVB irradiation, release cytochrome c followed by activation of caspase-3. Transfection of macrophages/Sf9 cells with a construct carrying the p35 gene under the CMV/HSP promoters resulted in p35 expression and consequent arrest of oxidative stress-induced apoptosis. p35 expression also inhibited cytochrome c release from the mitochondria of oxidant-exposed cells and blocked caspase-3 activation.  相似文献   

13.
Lee EO  Kwon BM  Song GY  Chae CH  Kim HM  Shim IS  Ahn KS  Kim SH 《Life sciences》2004,74(18):2313-2326
Heyneanol A, a tetramer of resveratrol, is isolated from the roots of Vitis amurensis by cytotoxicity based fractionation. In this study, the mechanism of apoptosis by heyneanol A was evaluated in human leukemic U937 cells. Heyneanol A (IC(50) = 6.6 microM at 24 h) exhibited stronger cytotoxic effect than resveratrol (IC(50) = 100 microM at 24 h) by 15-fold on human leukemic U937 cells by XTT assay. Apoptotic bodies were observed in U937 cells treated with 6 microM of heyneanol A by TUNEL assay. Heyneanol A effectively increased the portion of sub-G(1) DNA content in a time- and concentration-dependent manner by flow cytometric analysis. Heyneanol A also induced cytochrome c release from mitochondria into the cytosol and subsequent caspase activation involving caspase 9 and 3 to cleave PARP. However, it did not affect the expressions of Bax and Bcl-2 by western blotting. It was confirmed that the activation of caspase 8, 9 and 3 and the cleavage of PARP by heyneanol A were completely blocked by adding Z-VAD-FMK, a caspase inhibitor. These findings suggest that heyneanol A has anti-tumor activity, which may be mediated by apoptosis caused by cytochrome c release and caspase activation in human leukemic U937 cells.  相似文献   

14.
In sympathetic neurons, unlike most nonneuronal cells, growth factor withdrawal-induced apoptosis requires the development of competence in addition to cytochrome c release to activate caspases. Thus, although most nonneuronal cells die rapidly with cytosolic cytochrome c alone, sympathetic neurons are remarkably resistant unless they develop competence. We have identified endogenous X-linked inhibitor of apoptosis protein (XIAP) as the essential postcytochrome c regulator of caspase activation in these neurons. In contrast to wild-type neurons that are resistant to injection of cytochrome c, XIAP-deficient neurons died rapidly with cytosolic cytochrome c alone. Surprisingly, the release of endogenous Smac was not sufficient to overcome the XIAP resistance in sympathetic neurons. In contrast, the neuronal competence pathway permitted cytochrome c to activate caspases by inducing a marked reduction in XIAP levels in these neurons. Thus, the removal of XIAP inhibition appears both necessary and sufficient for cytochrome c to activate caspases in sympathetic neurons. These data identify a critical function of endogenous XIAP in regulating apoptosis in mammalian cells.  相似文献   

15.
FSK88, a forskolin derivative, was extracted and purified from cultured tropical plant roots, Coleus forskohlii. Our previous studies have demonstrated that FSK88 can inhibit HL-60 cell proliferation and induce the differentiation of HL-60 cells to monocyte macrophages. In this study, we showed that FSK88 can induce apoptotic death of human gastric cancer BGC823 cells in a dose- and time-dependent manner. Results showed that FSK88-induced apoptosis was accompanied by the mitochondrial release of cytochrome c and activation of caspase-3 in BGC823 cells. Furthermore, treatment with caspase-3 inhibitor (z-DEVD-fmk) was capable of preventing the FSK88-induced caspase-3 activity and apoptosis. FSK88-induced apoptosis in human gastric cancer BGC823 cells was also accompanied by the up-regulation of Bax, Bad and down-regulation of Bcl-2. Theses results clearly demonstrated that the induction of apoptosis by FSK88 involved multiple cellular and molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family genes, mitochondrial membrane potential (Deltapsi(m)), cytochrome c, and caspase-3, participate in the FSK88-induced apoptotic process in human gastric cancer BGC823 cells.  相似文献   

16.
Protein kinase B (Akt1) holds a central role for cellular growth, development, and survival, but the cellular pathways of Akt1 that prevent inflammatory demise in the vascular system remain undefined. Employing a constitutively active form of Akt1 (myristoylated Akt1) in endothelial cells (ECs), we demonstrate that Akt1 not only modulates intrinsic pathways of EC injury that involve genomic DNA destruction, but also uniquely regulates extrinsic mechanisms of cellular inflammation mediated by phosphatidylserine exposure (PS) and microglial activation. Activation of Akt1 is necessary and sufficient to prevent apoptotic EC destruction, since inhibition of the phosphatidylinositide-3-kinase pathway as well as transfection of ECs with a dominant-negative Akt1 mutant abrogates vascular protection. Furthermore, we illustrate that control of microglial activation by Akt1 is directly dependent on the modulation of EC membrane PS exposure. Akt1 provides a novel capacity to foster EC survival through the prevention of cysteine protease degradation of Bcl-x(L) that is intimately linked to the specific inhibition of caspase 1-, 3-, and 9-like activities and the modulation of mitochondrial membrane potential and cytochrome c release. Our work elucidates the critical role of Akt1 during cellular inflammation and identifies new downstream targets of Akt1 that may offer therapeutic potential against vascular disease.  相似文献   

17.
Thirty years after Peter Mitchell was awarded the Nobel Prize for the chemiosmotic hypothesis, which links the mitochondrial membrane potential generated by the proton pumps of the electron transport chain to ATP production by ATP synthase, the molecular players involved once again attract attention. This is so because medical research increasingly recognizes mitochondrial dysfunction as a major factor in the pathology of numerous human diseases, including diabetes, cancer, neurodegenerative diseases, and ischemia reperfusion injury. We propose a model linking mitochondrial oxidative phosphorylation (OxPhos) to human disease, through a lack of energy, excessive free radical production, or a combination of both. We discuss the regulation of OxPhos by cell signaling pathways as a main regulatory mechanism in higher organisms, which in turn determines the magnitude of the mitochondrial membrane potential: if too low, ATP production cannot meet demand, and if too high, free radicals are produced. This model is presented in light of the recently emerging understanding of mechanisms that regulate mammalian cytochrome c oxidase and its substrate cytochrome c as representative enzymes for the entire OxPhos system.  相似文献   

18.
Platelets are cleared from circulation after a life span of 8-10 days. The molecular mechanisms underlying platelet senescence remain poorly characterized. Here we report that, progressive functional impairment in the platelets incubated in vitro in a plasma-free isotonic medium for up to 24 h at 37 degrees C is associated with release of cytochrome c from platelet mitochondria and cleavage of procaspase-9, but without evidence of caspase-3 activation. Concomitantly, there was proteolysis of survival proteins like focal adhesion kinase, Src, gelsolin, and specific cytoskeleton-associated peptides, in a manner regulated by extracellular calcium and calpain activity. Cytoskeleton played a critical role as evidenced from the association of these proteins and their degradation products, as well as procaspase-3 and the actin regulatory small GTPase, CDC42Hs, with the cytoskeleton of the stored platelets. The cytoskeletal enrichment with specific proteins was not associated with increase in the content of F-actin and was cytochalasin-resistant, thus signifying a novel mechanism of interaction of the translocating proteins with the pre-existing cytoskeleton. There was progressive exposure of phosphatidylserine on the outer leaflet of platelet membrane and specific electron microscopic changes suggestive of apoptotic lesions. Based on these observations we discuss the caspase-independent but calpain-mediated signaling events in the stored platelets resembling the features of apoptosis in the nucleated cells.  相似文献   

19.
Analyzing mitochondrial changes during apoptosis   总被引:17,自引:0,他引:17  
Mitochondria play a central role in programmed cell death through the release of cytochrome c and other proapoptotic factors. Fluorescence microscopy is used to visualize cytochrome c translocation and loss of mitochondrial membrane potential. Flow cytometry can also be used to measure mitochondrial membrane potential. Cytochrome c content in cytosol and mitochondria can be determined by immunoblotting after subcellular fractionation or selective permeabilization with digitonin. Isolated mitochondria can be used to study the mechanism of cytochrome c release. This article summarizes some of the more widely used methods to assess mitochondrial alterations in apoptosis.  相似文献   

20.
The clinical and biochemical findings of 14 patients with an isolated defect of thebc 1 complex have been summarized. The heterogeneity of this group of disorders reflects the severity and tissue specific expression of the defect and the complexity of this multisubunit protein with components that are coded on both nuclear and mitochondrial DNA. The data on several patients with a combined defect of cytochrome oxidase and thebc 1 complex or with multiple respiratory chain defects have also been presented and discussed in relation to our knowledge of the biosynthesis and assembly of the respiratory chain complexes. The severity of the defectin vivo is illustrated in one patient with isolated complex III deficiency by measurement of O2 consumption and CO2 production following exercise, or by31P-NMR. The latter also provides a means by which response to therapy can be followed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号