首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The granulocyte-macrophage colony stimulating factors   总被引:8,自引:0,他引:8  
D Metcalf 《Cell》1985,43(1):5-6
  相似文献   

2.
The production of granulocytes and macrophages from progenitor cells in the bone marrow is controlled, in part, by a family of humoral regulators, termed colony stimulating factors (CSF). We have examined genetic factors controlling this process using in vitro cloning techniques. The inbred mouse strain LP/J showed elevated colony formation (CFU-C) in response to one subtype of CSF (G,M-CSF) compared to other strains of mice examined including the strain C57BL/6J. This variation resulted in a shift to the left of the CFU-C dose-response curve for LP/J. No difference between LP/J and C57BL/6J was seen with another subtype of CSF (CSF-1). Maximal CFU-C response was similar in the two mouse strains with both types of CSF, and mixing experiments with both types of CSF gave the same maximal level of colony formation as the individual CSF. (C57BL/6J X LP/J)F1 progeny exhibited a CFU-C dose-response curve to CSF-2 that was intermediate between the parental types, indicating additive inheritance. Genetic analysis of backcross progeny suggested that the variation in CFU-C response is probably determined by a single primary gene, although the variability of the colony formation assay has complicated interpretation of genetic studies. These results suggest that CSF-1 and G,M-CSF act independently on a single bone marrow progenitor cell population. The properties of the genetic variation for G,M-CSF response are consistent with an alteration in cellular receptors for G,M-CSF.  相似文献   

3.
重组人粒细胞——巨噬细胞集落刺激因子的分离与纯化   总被引:3,自引:0,他引:3  
探讨重组人粒-巨噬细胞集落刺激因子的分离、纯化工艺。实验所得工艺流程为:离收收集菌体、超声破菌、溶解复性后以3步色谱法即疏水作用色谱、离子交换色谱、凝胶过滤精制纯化,终产品过滤除菌。所得产物用HPLC及SDS-PAGE分析,纯度大于99%;与生白能对照测得其生物活性为1.59*10^7-1.86*10^7U/mg;产品的急性毒性实验及热原检测均符合要求。此工艺有一定的实用价值。  相似文献   

4.
A recombinant form of human granulocyte-macrophage colony stimulating factor (GM-CSF) which contains no carbohydrate has been crystallized. Multiple isomorphous replacement analysis using five heavy-atom derivatives has yielded an image of the structure at 6 A resolution that showed two molecules per asymmetric unit and allowed determination of the non-crystallographic symmetry transformation. The 6 A resolution result shows that the core of GM-CSF consists of four helices. The angles at which the helices pack together distinguishes this structure from known antiparallel four-helix bundle proteins. Consideration of the amino acid sequence properties and previous structural characterizations of GM-CSF leads to an assignment of the probable protein segments that form the helices.  相似文献   

5.
6.
The effect of mannan polysaccharide on the haemopoiesis recovery in irradiated mice has been investigated. Mannan has been shown to exert both the protective and the stimulatory effect: it accelerates restoration of femur bone marrow cellularity and nucleate cell number in the peripheral blood and causes a larger initial yield and subsequent more rapid postirradiation dynamics of pluripotent haemopoietic stem cells and precursor cells of granulocytes and macrophages.  相似文献   

7.
8.
Involvement of granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) in non-lymphohematopoietic malignant tumors accompanied by leukocytosis was clinicopathologically investigated. Among 1,778 autopsy cases in the last 20 years, 485 lesions of 439 cases with non-lymphohematopoietic malignant tumors accompanied by leukocytosis with a white blood cell count of 10,000/mm3 or greater during the course were immunohistologically examined for G-CSF and GM-CSF. Three (0.7%) and two cases (0.5%) were G-CSF- and GM-CSF-positive, respectively. GM-CSF mRNA was confirmed by using non-fixed cryopreserved tumor tissues in one case positive for GM-CSF. G-CSF-positive cases were large cell carcinoma of the lung, adenocarcinoma of the colon, and adenocarcinoma of the stomach, and GM-CSF-positive cases were spindle cell carcinoma of the lung and malignant thymoma. In the case with stomach carcinoma, the primary lesion showing moderately differentiated adenocarcinoma was negative, but the lung metastatic lesion showing less differentiated adenocarcinoma was G-CSF-positive. The survival period was six months or less in four out of five positive cases. The highest white blood cell count in five CSF-positive cases was markedly elevated: 29,400-103,500/mm3 (mean: 59,700/mm3). In four cases, excluding one case which may have been markedly affected by chemotherapy, the bone marrow showed hyperplasia, and the number of the granulocyte series cells significantly increased. There were three cases (0.7%) negative for both G-CSF and GM-CSF, although they showed marked leukocytosis (60,000/mm3 or higher) which were higher than the mean count of CSF-positive cases and was not observed in autopsy cases with non-tumorous diseases. Other stimulating factors may be involved in the development of leukocytosis in such cases.  相似文献   

9.
The effects of granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), and interleukin 3 (IL3) on osteoclast formation were tested by incubation of murine hemopoietic cells on plastic coverslips and bone slices with GM-CSF, M-CSF, or IL3, with or without 1,25(OH)2 vitamin D3 (1,25(OH)2D3). Osteoclastic differentiation was detected after incubation by scanning electron microscopical examination of bone slices for evidence of osteoclastic excavations, and by autoradiographic assessment of cells for 1,25(OH)2D3-calcitonin (CT) binding. The differentiation of CT-receptor-positive cells preceded bone resorption, but the number that developed correlated with the extent of bone resorption (r = 0.88). M-CSF and GM-CSF substantially reduced bone resorption and CT-receptor-positive cell formation. The degree of inhibition of bone resorption could not be attributed to effects on the function of mature cells, since M-CSF inhibits resorption by such cells only by 50%, and GM-CSF has no effect. GM-CSF inhibited the development of mature function (bone resorption) to a greater extent than it inhibited CT-receptor-positive cell formation. Since CT-receptor expression antedated resorptive function, this suggests that GM-CSF resulted in the formation of reduced numbers of relatively immature osteoclasts. This suggests that it may exert a restraining effect on the maturation of cells undergoing osteoclastic differentiation in response to 1,25(OH)2D3. Conversely, IL3, which also has no effect on mature osteoclasts, by itself induced CT-receptor expression but not bone resorption; in combination with 1,25(OH)2D3 it induced a threefold increase in bone resorption and CT-receptor-positive cells compared with cultures incubated with 1,25(OH)2D3 alone. IL3 did not induce CT-receptors in peritoneal macrophages, blood monocytes, or J 774 cells. The results suggest that IL3 induces only partial maturation of osteoclasts, which is augmented or completed by additional factors such as 1,25(OH)2D3.  相似文献   

10.
The production of blood cells in the body is controlled by at least 20 polypeptide growth factors. Most of these factors have been cloned and many expressed in bacterial and eukaryotic systems to give biologically active proteins. Currently, these recombinant human proteins are undergoing intensive evaluation for their use in treating primary haemopoietic diseases, or stimulating normal haemopoiesis following drug-, radiation- or virus-induced trauma of the bone marrow. Erythropoietin (EPO) and the myeloid colony stimulating factors (IL-3, G-CSF, GM-CSF and M-CSF) were among the first to be cloned and expressed.  相似文献   

11.
More gene products that influence hematopoiesis continue to become available. As a result, is now possible to carry out both in vivo and in vitro studies with purified erythropoietin, various colony stimulating factors and 11 interleukins. The identification and availability of the ligand for the c-kit gene product has had a profound influence in the past year.  相似文献   

12.
A cDNA containing a virtually complete copy of the mRNA for the haemopoietic growth regulator, granulocyte-macrophage colony stimulating factor (GM-CSF), has been isolated from a murine T lymphocyte cDNA library. When a eukaryotic expression vector with this cDNA coupled to the SV40 late promoter was introduced into simian COS cells, significant quantities of GM-CSF were secreted. Since all of the biological activities previously ascribed to highly purified GM-CSF were exhibited in the COS cell-derived GM-CSF, all of these activities are intrinsic to the product of a single gene. There are two potential translational initiation codons in the GM-CSF mRNA; the first is buried in the stem and the second located in the loop of a very stable hairpin structure. Expression studies using deletion derivatives of the cDNA indicated that the second AUG is able to initiate the translation and secretion of GM-CSF. The amino acid sequence of the leader peptide is rather atypical for a secreted protein and we speculate that molecules which initiate at the first AUG might exist as integral membrane proteins whereas those initiating at the second are secreted.  相似文献   

13.
Granulocyte-macrophage colony stimulating factor (GMCSF), a multifunctional cytokine can enhance immune responses when administered along with DNA vaccine. Aim of the present study was to clone and express the chicken GMCSF cytokine for use as 'genetic adjuvant'. Chicken GMCSF gene 435bp was amplified using specific primers in which restriction sites of BamHI and HindIII were at forward and reverse primers respectively. The PCR product was cloned into eukaryotic expression vector pcDNA 3.1(+) and clones were confirmed by restriction digestion and nucleotide sequencing. Functional activity of recombinant GMCSF was checked by expression of GMCSF specific mRNA in transfected Vero cells by RT-PCR of total RNA isolated from transfected Vero cells. The recombinant plasmid can be used as genetic adjuvant in chicken.  相似文献   

14.
Granulocyte-macrophage colony stimulating factor (GMCSF) promotes the growth of granulocytes and macrophages from undifferentiated bone marrow cells and modulates the oxidative responses of polymorphonuclear leukocytes (PMN) to endogenous chemoattractants. We found that,in vitro, naturally occurring glycolsylated human GMCSF does not disturb the resting canine PMN membrane potential, may attentuate PMN oxidative responses to PMA, and is, to a small degree, chemotaxigenic. GMCSF, however, inhibits PMN chemotaxis to zymosanactivated plasma (ZAP). Compared to temperature controls, GMCSF (1-100 U/ml) produced up to 1.5-fold increases in H2O2 production after 15 minutes, while phorbol myristate acetate (PMA) treated cells increased H2O2 production 8–12-fold after 15 minutes. Preincubation of cells with GMCSF (1–100 U/ml) prior to PMA stimulation significantly reduced the H2O2 levels induced by PMA. H202 production was inhibited up to 15% after 15 minutes of GMCSF preincubation and up to 40% after 60 minutes of preincubation. As a chemotaxigenic agent, GMCSF (10–1000 U/ml) was able to elicit 49%–102% increases in quantitative cellular migration, compared to random migration. Total cellular chemotaxis to GMCSF was < 30% of the response to ZAP. Preincubation of PMNs with GMCSF for 15 minutes significantly inhibited ZAP-induced cellular migration. Human GMCSF does not appear to activate canine PMNin vitro and may actually down-regulate PMN inflammatory responses.Supported by the Armed Forces Radiobiology Research Institute, Defense Nuclear Agency, under work unit No. 00082. Views presented in this paper are those of the authors; no endorsement by the Defense Nuclear Agency has been given or should be inferred. Research was conducted according to the principles enunciated in the Guide for the Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources, National Research Council.  相似文献   

15.
In this study, the ability of recombinant human macrophage (M) and murine granulocyte-macrophage (GM) colony stimulating factor (CSF) to affect both basal and stimulated bone resorption in fetal rat long-bone organ cultures was assessed. It was found that M-CSF does not affect basal bone resorption or bone resorption stimulated by parathyroid hormone, recombinant human interleukin 1 beta, prostaglandin E2 (PGE2), and 1,25 dihydroxy vitamin D3. Specifically, M-CSF at concentrations as high as 30 nM (1 microgram/mL) did not modulate 45Ca release from fetal rat long bones stimulated by these agents. The addition of recombinant murine GM-CSF (at equal molar concentration to M-CSF) also did not affect bone resorption stimulated by parathyroid hormone and interleukin 1 beta. On the other hand, GM-CSF stimulated basal bone resorption over a 120-h period and augmented the resorption mediated by exogenous PGE2 over a 48-h incubation. In addition, GM-CSF was shown to stimulate production of endogenous PGE2 in cultures of bone rudiments. These effects on bone resorption were blocked by the addition of prostaglandin synthesis inhibitors and specific antibodies to murine GM-CSF. These data indicate that M-CSF does not act as a regulator of bone turnover, but GM-CSF may cause bone resorption by stimulating the synthesis of PGE2 in bone.  相似文献   

16.
Human granulocyte colony-stimulating factor (G-CSF), and a mutant having a Ser for Cys substitution at residue 18 were produced in Escherichia coli strain W3110. About 60 mg of pure protein was obtained from 50 g of wet cells with a recovery of about 20%. The proteins were characterized physically and chemically, including determination of disulphide bonds, which were found to exist between residues 37-43 and 65-75. Cys-18 is not involved in disulphide bond formation and was substituted by Ser with no effects on gross protein conformation or biological activity. Both the wild-type and the mutant recombinant-derived proteins, although not glycosylated, possess colony-stimulating activities. In a bioassay using the murine myelomonocytic leukaemic cell line WEH1 3B D+, activities were obtained which were similar to those of natural G-CSF and of a glycosylated recombinant-derived human G-CSF produced in monkey cells.  相似文献   

17.
Biosimilars offer an avenue for potential cost savings and enhanced patient access to various emerging therapies in a budget neutral way. Biosimilars of the granulocyte colony stimulating factor (GCSF) are an excellent example in this regard with as many as 18 versions of the drug being currently approved across globe for treatment of neutropenia. Here, we identified oxidation of the various methionine residues in GCSF as a key heterogeneity that adversely impact its efficacy. In agreement with earlier studies, it was found that oxidation of Met 122 and Met 127 significantly contributes toward reduction of GCSF efficacy, measured using binding affinity to the GCSF receptor. The combination of molecular dynamics simulation along with structural characterization studies established that oxidation of Met 127 and Met 122 brings about a small local conformational change around the B‐C loop in GCSF structure due to slight displacement of Asp113 and Thr117 residues. The simulation studies were validated using fluorescence quenching experiments using acrylamide as quencher and site‐directed mutagenesis by replacing Met 122 and Met 127 residues with alanine. The results of this study lead to an enhanced mechanistic understanding of the oxidation in GCSF and should be useful in protein engineering efforts to design stable, safe, and efficacious GCSF product. In addition, the structure‐function information can provide targets for protein engineering during early drug development and setting specifications of allowable limits of product variants in biosimilar products.  相似文献   

18.
19.
20.
Kwon TH  Kim YS  Lee JH  Yang MS 《Biotechnology letters》2003,25(18):1571-1574
A complementary DNA encoding human granulocyte-macrophage colony stimulating factor (hGM-CSF) was cloned and introduced into tomato (Lycopersicon esculentum cv. Seokwang) using Agrobacterium-mediated transformation. Genomic PCR and Northern blot analysis demonstrated the integration of the construction into the plant nuclear genome and expression of the hGM-CSF in transgenic tomato. The cell suspension culture was established from leaf-derived calli of the transgenic tomato plants transformed with the hGM-CSF gene. Recombinant hGM-CSF was synthesized by the transgenic cell culture and secreted into the growth medium at 45 g l–1 after 10 d' cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号