首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
E. A. Ermakova 《Biophysics》2006,51(2):202-208
A comparative study of the interaction of two RNases (binase and barnase) with the polypeptide inhibitor barstar was performed by Brownian dynamics simulation. It was demonstrated that this method adequately reproduced the dependence of the association rate on the pH of solution as well as the effect of mutations at individual amino acid residues on the inhibition of barnase by barstar. Two types of energy-favorable binase-barstar encounter complexes were found. In type I complex, the amino acid residues of the binase active center are involved in formation of the complex; in type II complex, the active center remains free. It is suggested that temporary binding of free barstar into type II complex competes with the inhibition reaction. Presumably, this explains the decrease in the rate of binase inhibition by barstar as compared with the analogous reaction of barnase.  相似文献   

2.
A comparative study of the competitive reactions-the association reaction of binase with polypeptide inhibitor barstar and the reaction of binase dimerization-has been performed by the Brownian dynamics simulation method. It was shown that three types of the binase dimers could be formed and the dimerization reaction could compete with the inhibition reaction. The first type of the dimers leaves the active centre of binase free. During the formation of the dimers of the second and the third types the active centre of one or both binase molecules is blocked and ribonuclease becomes partially or fully inactive. Brownian dynamics simulation shown, that the ratio of competitive reaction rates depends on pH and ionic strength of solution.  相似文献   

3.
4.
5.
6.
Differential scanning calorimetry was used to study the thermodynamics of denaturation of protein complexes for which the free energy stabilizing the complexes varied between -8 and -16 kcal/mol. The proteins studied were the ribonucleases barnase and binase, their inhibitor barstar and mutants thereof, and complexes between the two. The results are in good agreement with the model developed by Brandts and Lin for studying the thermodynamics of denaturation for tight complexes between two proteins which undergo two-state thermal unfolding transitions.  相似文献   

7.
8.
C J Paddon  R W Hartley 《Gene》1987,53(1):11-19
An inactivated gene for Bacillus amyloliquefaciens extracellular ribonuclease (barnase) has previously been cloned and sequenced following transposon mutagenesis. The intact gene could not be assembled in Escherichia coli and is presumed to be lethal. Therefore, we introduced specific mutations into the barnase gene to prevent its lethal effect. A Gln-73 mutant gene was stable in E. coli but only produced low amounts of barnase antigen. Mutants containing Asp, Gln or Arg, instead of His-102, at the active site were identified by immunological screening for barnase antigen. None of the mutant proteins with alterations at aa residue 102 possessed RNase activity. The level of barnase (Asp-102) was higher in E. coli than in B. subtilis but the protein was not processed to the correct size in E. coli. To obtain correct processing, the barnase (Asp-102) structural gene was fused to the E. coli alkaline phosphatase promoter and signal sequence (phoA). Cells containing this construct secreted correctly processed barnase (Asp-102) into the periplasmic space and culture supernatant at a level of 20 mg/l. Barnase (Asp-102) was purified and found to have an identical N-terminus and a thermal unfolding curve that was nearly identical to that of active barnase (His-102). The cloning and expression of barnase in E. coli will allow detailed analysis of barnase protein folding by molecular genetic approaches.  相似文献   

9.
10.
Simulation of the diffusional association of barnase and barstar.   总被引:2,自引:1,他引:1       下载免费PDF全文
The rate of protein association places an upper limit on the response time due to protein interactions, which, under certain circumstances, can be diffusion-controlled. Simulations of model proteins show that diffusion-limited association rates are approximately 10(6)-10(7) M-1 s-1 in the absence of long-range forces (Northrup, S. H., and H. P. Erickson. 1992. Kinetics of protein-protein association explained by Brownian dynamics computer simulations. Proc. Natl. Acad. Sci. U.S.A. 89:3338-3342). The measured association rates of barnase and barstar are 10(8)-10(9) M-1 s-1 at 50 mM ionic strength, and depend on ionic strength (Schreiber, G., and A. R. Fersht. 1996. Rapid, electrostatically assisted association of proteins. Nat. Struct. Biol. 3:427-431), implying that their association is electrostatically facilitated. We report Brownian dynamics simulations of the diffusional association of barnase and barstar to compute association rates and their dependence on ionic strength and protein mutation. Crucial to the ability to reproduce experimental rates is the definition of encounter complex formation at the endpoint of diffusional motion. Simple definitions, such as a required root mean square (RMS) distance to the fully bound position, fail to explain the large influence of some mutations on association rates. Good agreement with experiments could be obtained if satisfaction of two intermolecular residue contacts was required for encounter complex formation. In the encounter complexes, barstar tends to be shifted from its position in the bound complex toward the guanine-binding loop on barnase.  相似文献   

11.
R W Hartley 《Biochemistry》1975,14(11):2367-2370
Barnase, the extracellular ribonuclease of Bacillus amyloliquefaciens, is shown to undergo a reversible two-state conformational transition at 0.65 mM sodium dodecyl sulfate (SDS) AAT 37 DEGREES. The prinicipal evidence is based on the equivalence of two independent values of the SDS-barnase binding ratio; about 14 mol of SDS/mol of barnase. Both were derived from fluorometric titration data, one being based on simple conservation of SDS and the other on the use of Wyman's theory of linked functions. No SDS is bound to barnase at SDS concentrations below the transition region.  相似文献   

12.
Barnase, the ribonuclease from Bacillus amyloliquefaciens, has been cloned and expressed in Escherichia coli [Hartley, R. W. (1988) J. Mol. Biol. 202, 913-915], thus enabling the overproduction and site-directed mutagenesis of one of the smallest enzymes (Mr equals 12,382). As barnase is also composed of just a single polypeptide chain with no disulfide bridges and has a reversible folding transition, it affords a fine system for studying protein folding and design. We show here that the recombinant enzyme has properties identical with those of the authentic enzyme, characterize the basic kinetics and specificity of the enzyme, and, using site-directed mutagenesis, identify key residues involved in catalysis to provide evidence that supports the classic ribonuclease mechanism. The wild-type enzyme catalyzes the hydrolysis of dinucleotides of structure GpN. There is a prime requirement for G and a preference for A greater than G greater than C greater than U for N. The pH-activity curve for the transesterification step of dinucleotides is bell shaped with an optimum for kcat/KM and kcat at about pH 5. The enzyme is far more active toward long RNA molecules, and the pH optimum for kcat is at 8.5. The activity of barnase toward dinucleotide substrates is about 0.5% of that of the highly homologous T1 nuclease at pH 5.9, but barnase is twice as active as T1 toward RNA at pH 8.5. There must be important subsite interactions that contribute to catalysis in barnase in addition to those immediately on either side of the scissile bond.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A modified antibiosis assay was used to evaluate growth inhibition of symbiotic and endophytic bacteria by E. coli strains producing Bacillus amyloliquefaciens ribonuclease, barnase. Inhibition zones were only observed when the assays were performed in minimal medium agar. However, bacterial growth inhibition was not detected when using rich medium or susceptible strains expressing the ribonuclease inhibitor protein, barstar. Our results suggest that barnase may act as a broad range bacteriocin. The ecological significance of these results is discussed.  相似文献   

14.
15.
16.
Barnase, the guanine specific ribonuclease of Bacillus amyloliquefaciens, was subjected to mutations in order to alter the electrostatic properties of the enzyme. Ser-85 was mutated into Glu with the goal to introduce an extra charge in the neighborhood of His-102. A double mutation (Ser-85-Glu and Asp-86-Asn) was introduced with the same purpose but without altering the global charge of the enzyme. A similar set of mutations was made using Asp at position 85. For all mutants the pI was determined using the technique of isoelectric focusing and calculated on the basis of the Tanford-Kirkwood theory. When Glu was used to replace Ser-85, the correlation between the experimental and the calculated values was perfect. However, in the Ser-85-Asp mutant, the experimental pI drop is bigger than the calculated one, and in the double mutant (Ser-85-Asp and Asp-86-Asn) the compensation is not achieved. The effect of the mutations on the pKa of His-102 can be determined from the pH dependence of the kcat/KM for the hydrolysis of dinucleotides, e.g., GpC. The effect can also be calculated using the method of Honig. In this case the agreement is very good for the Glu-mutants and the single Asp-mutant, but less for the double Asp-mutant. The global stability of the Asp-mutants is, however, the same as the wild type, as shown by stability studies using urea denaturation. Molecular dynamics calculations, however, show that in the double Asp-mutant His-102 (H+) swings out of its pocket to make a hydrogen bridge with Gln-104 which should cause an additional pKa rise. The effect of the Glu-mutations was also tested on all the kinetic parameters for GpC and the cyclic intermediate G > p at pH 6.5, for RNA at pH 8.0, and for poly(A) at pH 6.2. The effect of the mutations is rather limited for the dinucleotide and the cyclic intermediate, but a strong increase of the KM is observed in the case of the single mutant (extra negative charge) with polymeric substrates. These results indicate that the extra negative charge has a strong destabilizing effect on the binding of the polymeric substrates in the ground state and the transition state complex. A comparison with the structure of bound tetranucleotides (Buckle, A.M. and Fersht, A.R., Biochemistry 33:1644–1653, 1994) shows that the extra negative charge points towards the P2 site.  相似文献   

17.
Association of a protein complex follows a two step reaction mechanism, with the first step being the formation of an encounter complex which evolves into the final complex. Here we present new experimental data for the association of the bacterial ribonuclease barnase and its polypeptide inhibitor barstar which shed light on the thermodynamics and structure of the transition state and preceding encounter complex of association at diminishing electrostatic attraction. We show that the activation entropy at the transition state is close to zero, with the activation enthalpy being equal to the free energy of binding. This observation was independent of the magnitude of the mutual electrostatic attraction, which were altered by mutagenesis or by addition of salt. The low activation entropy implies that the transition state is mostly solvated at all ionic strengths. The structure of the transition state was probed by measuring pairwise interaction energies using double-mutant-cycles. While at low ionic strength all proximal charge-pairs form contacts, at high salt only a subset of these interactions are maintained. More specifically, charge-charge interactions between partially buried residues are lost, while exposed charged residues maintain their ability to form specific interactions even at the highest salt concentration. Uncharged residues do not interact at any ionic strength. The results presented here suggest that the barnase-barstar binding sites are correctly aligned during the transition state even at diminishing electrostatic attraction, although specific short range interactions of uncharged residues are not yet formed. Furthermore, most of the interface desolvation (which contributes to the entropy of the system) has not yet occurred. This picture seems to be valid at low and high salt. However, at high salt, interactions of the activated complex are limited to a more restricted set of residues which are easier approached during diffusion, prior to final docking. This suggest that the steering region at high salt is more limited, albeit maintaining its specificity.  相似文献   

18.
Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40°C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D {1H}-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear {1H}-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (m) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action.  相似文献   

19.
20.
Pang Y  Buck M  Zuiderweg ER 《Biochemistry》2002,41(8):2655-2666
The nano-pico second backbone dynamics of the ribonuclease binase, homologous to barnase, is investigated with (15)N, (13)C NMR relaxation at 11.74 and 18.78 T and with a 1.1 ns molecular dynamics simulation. The data are compared with the temperature factors reported for the X-ray structure of this enzyme. The molecular dynamics and X-ray data correspond well and predict motions in the loops 56-61 and 99-104 that contain residues that specifically recognize substrate and are catalytic (His101), respectively. In contrast, the (15)N relaxation data indicate that these loops are mostly ordered at the nano-pico second time scale. Nano-pico second motions in the recognition loop 56-61 are evident from (13)CO-(13)C cross relaxation data, but the mobility of the catalytic loop 99-104 is not detected by (13)CO cross relaxation either. From the results of this and previous work [Wang, L., Pang, Y., Holder, T., Brender, J. R., Kurochkin, A., and Zuiderweg, E. R. P. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 7684-7689], the following dynamical characterization of the active site area of binase emerges: a beta sheet, rigid at all probed time scales, supports the catalytic residue Glu 72. Both substrate-encapsulating loops are mobile on both fast and slow time scales, but the fast motions of the loop which contains the other catalytic residue, His 101, as predicted by B-factors and computational molecular dynamics is not detected by NMR relaxation. This work strongly argues for the use of several measures in the study of protein dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号