首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
N-[5-(5, 7-dimethyl Bodipy)-1-pentanoyl]-D-erythro-sphingosylphosphorylcholine (C5-DMB-SM), a fluorescent analog of sphingomyelin, has been used in a study of the formation of very early endosomes in human skin fibroblasts. This lipid exhibits a shift in its fluorescence emission maximum from green (approximately 515 nm) to red (approximately 620 nm) wavelengths with increasing concentrations in membranes. When cells were incubated with 5 microM C5-DMB-SM at 4 degrees C and washed, only plasma membrane fluorescence (yellow-green) was observed. When these cells were briefly (< or = 1 min) warmed to 37 degrees C to allow internalization to occur, and then incubated with defatted bovine serum albumin (back-exchanged) at 11 degrees C to remove fluorescent lipids from the plasma membrane, C5-DMB-SM was distributed in a punctate pattern throughout the cytoplasm. Interestingly, within the same cell some endosomes exhibited green fluorescence, whereas others emitted red-orange fluorescence. Furthermore, the red-orange endosomes were usually seen at the periphery of the cell, while the green endosomes were more uniformly distributed throughout the cytoplasm. This mixed population of endosomes was seen after internalization times as short as 7 s and was also seen over a wide range of C5-DMB-SM concentrations (1-25 microM). Control experiments established that the variously colored endosomes were not induced by changes in pH, membrane potential, vesicle size, or temperature. Quantitative fluorescence microscopy demonstrated that the apparent concentration of the lipid analog in the red-orange endosomes was severalfold higher than its initial concentration at the plasma membrane, suggesting selective internalization (sorting) of the lipid into a subset of early endosomes. Colocalization studies using C5-DMB-SM and either anti-transferrin receptor antibodies or fluorescently labeled low-density lipoprotein further demonstrated that this subpopulation of endosomes resulted from receptor-mediated endocytosis. We conclude that the spectral properties of C5-DMB-SM can be used to distinguish unique populations of early endosomes from one another and to record dynamic changes in their number and distribution within living cells.  相似文献   

2.
Sorting of sphingolipids in the endocytic pathway of HT29 cells   总被引:11,自引:5,他引:6       下载免费PDF全文
The intracellular flow and fate of two fluorescently labeled sphingolipids, 6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]hexanoyl glucosyl sphingosine (C6-NBD-glucosylceramide) and C6-NBD-sphingomyelin, was examined in the human colon adenocarcinoma cell line HT29. After their insertion into the plasma membrane at low temperature and subsequent warming of the cells to 37 degrees C, both sphingolipid analogues were internalized by endocytosis, but their intracellular site of destination differed. After 30 min of internalization, C6-NBD-glucosylceramide was localized in the Golgi apparatus, as demonstrated by colocalization with fluorescently labeled ceramide, a Golgi complex marker, and by showing that monensin-induced disruption of the Golgi structure was paralleled by a similar perturbation of the fluorescence distribution. By contrast, C6-NBD-sphingomyelin does not colocalize with the tagged ceramide. Rather, a colocalization with ricin, which is internalized by endocytosis and predominantly reaches the lysosomes, was observed, indicating that the site of delivery of this lipid is restricted to endosomal/lysosomal compartments. Also, in monensin-treated cells no change in the distribution of fluorescence was observed. Thus, these results demonstrate that (sphingo)lipid sorting can occur in the endocytic pathway. Interestingly, the observed sorting phenomenon was specific for glucosylceramide, when compared to other glycolipids, while only undifferentiated HT29 cells displayed the different routing of the two lipids. In differentiated HT29 cells the internalization pathway of sphingomyelin and glucosylceramide was indistinguishable from that of transferrin.  相似文献   

3.
We have previously demonstrated that glycosphingolipids are internalized from the plasma membrane of human skin fibroblasts by a clathrin-independent, caveolar-related mechanism and are subsequently transported to the Golgi apparatus by a process that is dependent on microtubules, phosphatidylinositol 3-kinase, Rab7, and Rab9. Here we characterized the early steps of intracellular transport of a fluorescent glycosphingolipid analog, BODIPY-lactosylceramide (LacCer), and compared this to fluorescent transferrin (Tfn), a well established marker for the clathrin pathway. Although these two markers were initially internalized into separate vesicles by distinct mechanisms, they became co-localized in early endosomes within 5 min. These results demonstrate that glycosphingolipid-containing vesicles derived from caveolar-related endocytosis fuse with the classical endosomal system. However, in contrast to Tfn, internalization and trafficking of LacCer was independent of Rab5a, a key regulator of transport to early endosomes. By taking advantage of the monomer/excimer properties of the fluorescent lipid analog, we were also able to visualize LacCer segregation into distinct microdomains of high (red emission) and low (green emission) concentrations in the early endosomes of living cells. Interestingly, the high concentration "red" microdomains co-localized with fluorescent Tfn upon exit from early endosomes and passed through Rab11-positive "recycling endosomes" prior to being transported back to the plasma membrane. These results together with our previous studies suggest that glycosphingolipids internalized by caveolar endocytosis are rapidly delivered to early endosomes where they are fractionated into two major pools, one that is transported via late endosomes to the Golgi apparatus and the other that is returned to the plasma membrane via the recycling compartment.  相似文献   

4.
We examined the uptake and intracellular transport of the fluorescent glucosylceramide analogue N-[5-(5,7-dimethyl BODIPYTM)-1-pentanoyl]- glucosyl sphingosine (C5-DMB-GlcCer) in human skin fibroblasts, and we compared its behavior to that of the corresponding fluorescent analogues of sphingomyelin, galactosylceramide, and lactosylceramide. All four fluorescent analogues were readily transferred from defatted BSA to the plasma membrane during incubation at 4 degrees C. When cells treated with C5-DMB-GlcCer were washed, warmed to 37 degrees C, and subsequently incubated with defatted BSA to remove fluorescent lipid at the cell surface, strong fluorescence was observed at the Golgi apparatus, as well as weaker labeling at the nuclear envelope and other intracellular membranes. Similar results were obtained with C5-DMB- galactosylceramide, except that labeling of the Golgi apparatus was weaker than with C5-DMB-GlcCer. Internalization of C5-DMB-GlcCer was not inhibited by various treatments, including ATP depletion or warming to 19 degrees C, and biochemical analysis demonstrated that the lipid was not metabolized during its internalization. However, accumulation of C5-DMB-GlcCer at the Golgi apparatus was reduced when cells were treated with a nonfluorescent analogue of glucosylceramide, suggesting that accumulation of C5-DMB-GlcCer at the Golgi apparatus was a saturable process. In contrast, cells treated with C5-DMB-analogues of sphingomyelin or lactosylceramide internalized the fluorescent lipid into a punctate pattern of fluorescence during warming at 37 degrees C, and this process was temperature and energy dependent. These results with C5-DMB-sphingomyelin and C5-DMB-lactosylceramide were analogous to those obtained with another fluorescent analogue of sphingomyelin in which labeling of endocytic vesicles and plasma membrane lipid recycling were documented (Koval, M., and R. E. Pagano. 1990. J. Cell Biol. 111:429-442). Incubation of perforated cells with C5-DMB- sphingomyelin resulted in prominent labeling of the nuclear envelope and other intracellular membranes, similar to the pattern observed with C5-DMB-GlcCer in intact cells. These observations are consistent with the transbilayer movement of fluorescent analogues of glucosylceramide and galactosylceramide at the plasma membrane and early endosomes of human skin fibroblasts, and suggest that both endocytic and nonendocytic pathways are used in the internalization of these lipids from the plasma membrane.  相似文献   

5.
In normal human skin fibroblasts (HSFs), fluorescent glycosphingolipid analogues are endocytosed and sorted into two pools, one that is recycled to the plasma membrane and one that is transported to the Golgi complex. Here, we investigated glycosphingolipid recycling in Niemann-Pick type A and C lipid storage disease fibroblasts (NPFs). Cells were incubated with a fluorescent analogue of lactosylceramide (LacCer) at 16 degrees C to label early endosomes (EEs), shifted to 37 degrees C, and lipid recycling was quantified. Using dominant negative rabs, we showed that, in normal HSFs, LacCer recycling was rapid (t1/2 approximately 8 min) and mainly rab4-dependent. In NPFs, LacCer recycling was delayed (t1/2 approximately 30-40 min), and rab4-dependent recycling was absent, whereas rab11-dependent recycling predominated. Transferrin recycling via the rab4 pathway was similarly perturbed in NPFs. Compared with normal HSFs, EEs in NPFs showed high cholesterol levels and an altered organization of rab4. In vitro extraction of rab4 (but not rab11) with GDP dissociation inhibitor was severely attenuated in NPF endosomal fractions. This impairment was reversed with cholesterol depletion of isolated endosomes or with high-salt treatment of endosomes. These data suggest that abnormal membrane recycling in NPFs results from specific inhibition of rab4 function by excess cholesterol in EEs.  相似文献   

6.
Synaptic vesicle proteins are suggested to travel from the trans-Golgi network to active zones via tubulovesicular organelles, but the participation of different populations of endosomes in trafficking remains a matter of debate. Therefore, we generated a green fluorescent protein (GFP)-tagged version of the vesicular acetylcholine transporter (VAChT) and studied the localization of VAChT in organelles in the cell body and varicosities of living cholinergic cells. GFP-VAChT is distributed to both early and recycling endosomes in the cell body and is also observed to accumulate in endocytic organelles within varicosities of SN56 cells. GFP-VAChT positive organelles in varicosities are localized close to plasma membrane and are labeled with FM4-64 and GFP-Rab5, markers of endocytic vesicles and early endosomes, respectively. A GFP-VAChT mutant lacking a dileucine endocytosis motif (leucine residues 485 and 486 changed to alanine residues) accumulated at the plasma membrane in SN56 cells. This endocytosis-defective GFP-VAChT mutant is localized primarily at the somal plasma membrane and exhibits reduced neuritic targeting. Furthermore, the VAChT mutant did not accumulate in varicosities, as did VAChT. Our data suggest that clathrin-mediated internalization of VAChT to endosomes at the cell body might be involved in proper sorting and trafficking of VAChT to varicosities. We conclude that genesis of competent cholinergic secretory vesicles depends on multiple interactions of VAChT with endocytic proteins.  相似文献   

7.
Hydrazide horseradish peroxidase, (hydHRP), a hydrazide derivative of the common cytochemical tracer HRP, was covalently coupled to the surface of periodate-treated Chinese hamster ovary (CHO) cells and used to study the distribution and internalization of plasma membrane glycoconjugates. The Schiff-base coupling of hydHRP to the cell surface at 4 degrees C had little effect on cell viability. After coupling, cells were washed at 4 degrees C and the subcellular distribution of hydHRP was determined immediately or after incubation at 37 degrees C. Within 1 hr, hydHRP was observed to cap over pseudopodal-like extensions and then accumulate over a 2.5 h period in a punctate to perinuclear staining pattern over the cell body. By electron microscopy, the pseudopodal-like regions were found to be areas of extensive cell surface invaginations, rich in microfilaments. HydHRP internalized over a 2.5 to 18 hr period was observed in smooth vesicles resembling pinosomes/endosomes, multivesicular bodies (lysosomes), and small perinuclear vesicles. Little, if any, hydHRP activity was detected in association with elements of Golgi apparatus. By cell fractionation in 10% Percoll gradients, hydHRP was found to have accumulated in prelysosomal endocytic vesicles and lysosomes. For cells that were first surface labeled with 125I at 4 degrees C and then conjugated with hydHRP, little, if any, cotransport of the 125I label with hydHRP was observed. Over the entire capping and internalization period, most hydHRP activity remained membrane associated. Overall, these results indicate that the dominant intracellular transport route for a covalent membrane probe, hydHRP glycoconjugate, is similar if not identical to that previously reported for the solute probe native HRP (16) in CHO cells. HydHRP internalization provides further evidence for the independent sorting of proteins in endocytic transport.  相似文献   

8.
Sphingolipids (SLs) are plasma membrane constituents in eukaryotic cells which play important roles in a wide variety of cellular functions. However, little is known about the mechanisms of their internalization from the plasma membrane or subsequent intracellular targeting. We have begun to study these issues in human skin fibroblasts using fluorescent SL analogues. Using selective endocytic inhibitors and dominant negative constructs of dynamin and epidermal growth factor receptor pathway substrate clone 15, we found that analogues of lactosylceramide and globoside were internalized almost exclusively by a clathrin-independent ("caveolar-like") mechanism, whereas an analogue of sphingomyelin was taken up approximately equally by clathrin-dependent and -independent pathways. We also showed that the Golgi targeting of SL analogues internalized via the caveolar-like pathway was selectively perturbed by elevated intracellular cholesterol, demonstrating the existence of two discrete Golgi targeting pathways. Studies using SL-binding toxins internalized via clathrin-dependent or -independent mechanisms confirmed that endogenous SLs follow the same two pathways. These findings (a) provide a direct demonstration of differential SLs sorting into early endosomes in living cells, (b) provide a "vital marker" for endosomes derived from caveolar-like endocytosis, and (c) identify two independent pathways for lipid transport from the plasma membrane to the Golgi apparatus in human skin fibroblasts.  相似文献   

9.
The fluorescent phospholipid analog N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE) was inserted into the plasma membrane of Baby hamster kidney cells at low temperature (2 degrees C). The mobility characteristics of the analog--as revealed by fluorescence photobleaching recovery--were very similar to those of membrane-inserted 1-acyl-2[6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]caproyl] phosphatidylcholine (C6-NBD-PC). Upon warming to 37 degrees C, followed by a 1-h incubation, all N-Rh-PE was located intracellularly. By contrast, after the same time interval, approximately 10% of the cell-associated PC-derivative was found intracellularly. Furthermore, the analogs moved to different intracellular sites, as N-Rh-PE associates with perinuclear and peri-Golgi structures, whereas C6-NBD-PC appears mainly in the Golgi complex. Colocalization with organelle-specific probes and Percoll gradient analysis identified the N-Rh-PE-labeled structures as lysosomes. Temperature and energy-dependent experiments supported the endocytic pathway as the mechanism of N-Rh-PE internalization. The mechanism of N-Rh-PE internalization appears to differ from that of C6-NBD-PC. In conjunction with a difference in the efficiency of removal of the lipid derivatives from the plasma membrane, the results suggest that N-Rh-PE is selectively internalized, implying that sorting of the lipid analogs already occurs at the level of the plasma membrane. The distinct difference in physical appearance of the probes after membrane insertion, i.e., N-Rh-PE being present as small clusters and C6-NBD-PC as monomers, could explain the selective sorting and internalization of N-Rh-PE. The results demonstrate that N-Rh-PE may serve as a useful marker for studying membrane traffic during endocytosis.  相似文献   

10.
A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N-SRh-C10). This was done by observing the sites of RET in cells doubly labeled with N-SRh-C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.  相似文献   

11.
We applied the endocytic markers FM1-43, FM4-64 and filipin to internodal cells of the green alga Chara corallina. Both FM dyes stained stable, long-living plasma membrane patches with a diameter of up to 1 microm. After 5 min, FM dyes labeled cortical, trembling structures up to 500 nm in size. After 15 min, FM dyes localized to endoplasmic organelles up to 1 microm in diameter, which migrated actively along actin bundles or participated in cytoplasmic mass streaming. After 30-60 min, FM fluorescence appeared in the membrane of small, endoplasmic vacuoles but not in that of the central vacuole. Some of the FM-labeled organelles were also stained by neutral red and lysotracker yellow, indicative of acidic compartments. Filipin, a sterol-specific marker, likewise labeled plasma membrane domains which co-localized with the FM patches. However, internalization of filipin could not be observed. KCN, cytochalasin D, latrunculin B and oryzalin had no effect on size, shape and distribution of FM- and filipin-labeled plasma membrane domains. Internalization of FM dyes was inhibited by KCN but not by drugs which interfere with the actin or microtubule cytoskeleton. Our data indicate that the plasma membrane of characean internodal cells contains discrete domains which are enriched in sterols and probably correspond to clusters of lipid rafts. The inhibitor experiments suggest that FM uptake is active but independent of actin filaments, actin polymerization and microtubules. The possible function of the sterol-rich, FM labeled plasma membrane areas and the significance of actin-independent FM internalization (via endocytosis or energy-dependent flippases) are discussed.  相似文献   

12.
A series of ceramide analogues bearing the fluorophore boron dipyrromethene difluoride (BODIPY) were synthesized and evaluated as vital stains for the Golgi apparatus, and as tools for studying lipid traffic between the Golgi apparatus and the plasma membrane of living cells. Studies of the spectral properties of several of the BODIPY-labeled ceramides in lipid vesicles demonstrated that the fluorescence emission maxima were strongly dependent upon the molar density of the probes in the membrane. This was especially evident using N-[5-(5,7-dimethyl BODIPY)-1-pentanoyl]-D-erythro-sphingosine (C5-DMB-Cer), which exhibited a shift in its emission maximum from green (integral of 515 nm) to red (integral of 620 nm) wavelengths with increasing concentrations. When C5-DMB-Cer was used to label living cells, this property allowed us to differentiate membranes containing high concentrations of the fluorescent lipid and its metabolites (the corresponding analogues of sphingomyelin and glucosylceramide) from other regions of the cell where smaller amounts of the probe were present. Using this approach, prominent red fluorescent labeling of the Golgi apparatus, Golgi apparatus-associated tubulovesicular processes, and putative Golgi apparatus transport vesicles was seen in living human skin fibroblasts, as well as in other cell types. Based on fluorescence ratio imaging microscopy, we estimate that C5-DMB-Cer and its metabolites were present in Golgi apparatus membranes at concentrations up to 5-10 mol %. In addition, the concentration-dependent spectral properties of C5-DMB-Cer were used to monitor the transport of C5-DMB-lipids to the cell surface at 37 degrees C.  相似文献   

13.
Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-beta-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia.  相似文献   

14.
Transport of the fluorescent cholesterol analog dehydroergosterol (DHE) from the plasma membrane was studied in J774 macrophages (Mphis) with normal and elevated cholesterol content. Cells were labeled with DHE bound to methyl-beta-cyclodextrin. In J774, Mphis with normal cholesterol, intracellular DHE became enriched in recycling endosomes, but was not highly concentrated in the trans-Golgi network or late endosomes and lysosomes. After raising cellular cholesterol by incubation with acetylated low-density lipoprotein (AcLDL), DHE was transported to lipid droplets, and less sterol was found in recycling endosomes. Transport of DHE to droplets was very rapid (t1/2 = 1.5 min after photobleaching) and did not require metabolic energy. In cholesterol-loaded J774 Mphis, the initial fraction of DHE in the plasma membrane was reduced, and rapid DHE efflux from the plasma membrane to intracellular organelles was observed. This rapid sterol transport was not related to plasma membrane vesiculation, as DHE did not become enriched in endocytic vesicles formed after sphingomyelinase C treatment of cells. When cells were incubated with DHE ester incorporated into AcLDL, fluorescence of the sterol was first found in punctate endosomes. After a chase, this DHE colocalized with transferrin in a distribution similar to cells labeled with DHE delivered by methyl-beta-cyclodextrin. Our results indicate that elevation of sterol levels in Mphis enhances transport of sterol from the plasma membrane by a non-vesicular pathway.  相似文献   

15.
Cholesterol-dependent retention of GPI-anchored proteins in endosomes.   总被引:24,自引:1,他引:23       下载免费PDF全文
S Mayor  S Sabharanjak    F R Maxfield 《The EMBO journal》1998,17(16):4626-4638
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins.  相似文献   

16.
Receptor-mediated endocytosis of transferrin by Sertoli cells of the rat   总被引:1,自引:0,他引:1  
Binding of 125I-transferrin (125I-Tf) to the plasma membrane of Sertoli cells and its endocytosis were analyzed by means of light- and electron-microscope quantitative radioautography. Five minutes after 125I-Tf was injected into the interstitial space of the testis, a strong labeling of the basal aspect of the seminiferous epithelium was observed in light-microscope radioautographs. Injection of the same dose of 125I-Tf plus a 200-fold excess of cold transferrin resulted in a marked diminution of the radioautographic reaction, indicating that the initial strong labeling with radiolabeled transferrin was specific. These results were consistent with the localization of immunoreactive fluorescence of transferrin receptor at the base of the seminiferous epithelium. In electron-microscope radioautographs of tubules collected at 5 min after injection, the membrane of Sertoli cells facing the basement membrane was well labeled with 125I-Tf. At 15 and 30 min, the plasma membrane was less intensely labeled, but the silver grains were then seen overlying multivesicular bodies with an electron-lucent matrix, identified as endosomes. This population of endosomes was always seen at a short distance from the basal membrane of Sertoli cells. At 90 min, no more labeling of the plasma membrane, endosomes, or any other cytoplasmic component was observed. Isolated seminiferous tubules and Sertoli cells labeled with 125I-Tf at 4 degrees C were rinsed and reincubated in a label-free medium at 37 degrees C for various periods of time from 5 to 90 min. A radioactive protein precipitated by trichloroacetic acid, presumably intact transferrin, was released from the tubules into the incubating medium; when measured, it was found to increase rapidly from 5 to 45 min and stabilize thereafter. These results suggest that transferrin was internalized by receptor-mediated endocytosis, reached endosomes, and then was released to the extratubular space. When native ferritin (NF), a tracer for fluid-phase endocytosis, was infused within the lumen of seminiferous tubules and 125I-Tf was simultaneously injected into the interstitial space, both markers rapidly reached different populations of endosomes. Endosomes labeled with NF, scattered throughout the cytoplasm, evolved with time into dense multivesicular bodies and secondary lysosomes, whereas radiolabeled transferrin reached only the endosomes located in the basal cytoplasm of Sertoli cells. The latter thus appeared to be principally involved in the uptake and recycling of transferrin.  相似文献   

17.
Clathrin-independent endocytosis internalizes plasma membrane proteins that lack cytoplasmic sequences recognized by clathrin adaptor proteins. There is evidence for different clathrin-independent pathways but whether they share common features has not been systematically tested. Here, we examined whether CD59, an endogenous glycosylphosphatidyl inositol-anchored protein (GPI-AP), and major histocompatibility protein class I (MHCI), an endogenous, integral membrane protein, entered cells through a common mechanism and followed a similar itinerary. At early times of internalization, CD59 and MHCI were found in the same Arf6-associated endosomes before joining clathrin cargo proteins such as transferrin in common sorting endosomes. CD59 and MHCI, but not transferrin, also were observed in the Arf6-associated tubular recycling membranes. Endocytosis of CD59 and MHCI required free membrane cholesterol because it was inhibited by filipin binding to the cell surface. Expression of active Arf6 stimulated endocytosis of GPI-APs and MHCI to the same extent and led to their accumulation in Arf6 endosomes that labeled intensely with filipin. This blocked delivery of GPI-APs and MHCI to early sorting endosomes and to lysosomes for degradation. Endocytosis of transferrin was not affected by any of these treatments. These observations suggest common mechanisms for endocytosis without clathrin.  相似文献   

18.
Rho GTPases are key regulators of actin dynamics. We report that the Rho GTPase TCL, which is closely related to Cdc42 and TC10, localizes to the plasma membrane and the early/sorting endosomes in HeLa cells, suggesting a role in the early endocytic pathway. Receptor-dependent internalization of transferrin (Tf) is unaffected by suppression of endogenous TCL by small interfering RNA treatment. However, Tf accumulates in Rab5-positive uncoated endocytic vesicles and fails to reach the early endosome antigen-1-positive early endosomal compartments and the pericentriolar recycling endosomes. Moreover, Tf release upon TCL knockdown is significantly slower. Conversely, in the presence of dominant active TCL, internalized Tf accumulates in early endosome antigen-1-positive early/sorting endosomes and not in perinuclear recycling endosomes. Tf recycles directly from the early/sorting endosomes and it is normally released by the cells. The same phenotype is generated by replacing the C terminus of dominant active Cdc42 and TC10 with that of TCL, indicating that all three proteins share downstream effector proteins. Thus, TCL is essential for clathrin-dependent endocytosed receptors to enter the early/sorting endosomes. Furthermore, the active GTPase favors direct recycling from early/sorting endosomes without accumulating in the perinuclear recycling endosomes.  相似文献   

19.
The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcεRI) expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcεRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcεRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.  相似文献   

20.
We have examined the internalization and degradation of a fluorescent analog of phosphatidylcholine after its insertion into the plasma membrane of cultured Chinese hamster fibroblasts. 1-acyl-2-(N-4- nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidylcholine (C6-NBD- PC) was incorporated into the cell surface by liposome-cell lipid transfer at 2 degrees C. The fluorescent lipid remained localized at the plasma membrane as long as the cells were kept at 2 degrees C; however, when the cells were warmed to 37 degrees C, internalization of some of the fluorescent lipid occurred. Most of the internalized C6-NBD- PC accumulated in the Golgi apparatus although a small amount was found randomly distributed throughout the cytoplasm in punctate fluorescent structures. Internalization of the fluorescent lipid at 37 degrees C was blocked by the presence of inhibitors of endocytosis. Incubation of cells containing C6-NBD-PC at 37 degrees C resulted in a rapid degradation of the fluorescent lipid. This degradation occurred predominantly at the plasma membrane. The degradation of C6-NBD-PC resulted in the release of NBD-fatty acid into the medium. We have compared the internalization of the fluorescent lipid with that of a fluorescent protein bound to the cell surface. Both fluorescent lipid and protein remained at the plasma membrane at 2 degrees C and neither were internalized at 37 degrees C in the presence of inhibitors of endocytosis. However, when incubated at 37 degrees C under conditions that permit endocytosis, the two fluorescent species appeared at different intracellular sites. Our data suggest that there is no transmembrane movement of C6-NBD-PC and that the fluorescent probe reflects the internalization of the outer leaflet of the plasma membrane lipid bilayer. The results are consistent with the Golgi apparatus as being the primary delivery site of phospholipid by bulk membrane movement from the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号