首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although the light-harvesting chlorophyll protein complex I (LHCI) of photosystem I (PSI) is intimately associated with the PSI core complex and forms the PSI-LHCI supercomplex, the LHCI is normally synthesized in PSI-deficient mutants. In this paper, we compared the subunit compositions of the PSI-LHCI supercomplex and the LHCI by immunoblot analysis and two-dimensional gel electrophoresis combined with mass spectrometry. The PSI-LHCI supercomplex and the LHCI were purified by sucrose density gradient centrifugation and (diethylamino)ethyl column chromatography from n-dodecyl-beta-D-maltoside-solubilized thylakoids of the wild-type and DeltapsaB mutant of the green alga Chlamydomonas reinhardtii. The PSI-LHCI supercomplex contained all of the nine Lhca polypeptides (Lhca1-9) that are detected in wild-type thylakoids. In contrast, the LHCI retained only six Lhca polypeptides, whereas Lhca3 and two minor polypeptides, Lhca2 and Lhca9, were lost during the purification procedure. Sucrose density gradient centrifugation showed that the purified LHCI retains an oligomeric structure with an apparent molecular mass of 300-400 kDa. We therefore concluded that Lhca2, Lhca3, and Lhca9 are not required for the stable oligomeric structure of the LHCI and that the association of these polypeptides in the LHCI is stabilized by the presence of the PSI core complex. Finally, we discuss the possible localization and function of Lhca polypeptides in the LHCI.  相似文献   

4.
When isolated, intact chloroplasts of pea (Pisum sativum) are incubated in the light with [32P]-orthophosphate, isotope is incorporated into several polypeptides. Among the most conspicuous phosphoproteins are two which form a very closely spaced doublet on dodecyl sulphate/polyacrylamide gels and co-electrophorese with the major polypeptide component of the light-harvesting chlorophyll a/b binding complex. Like the light-harvesting polypeptide, the phosphoprotein doublet is bound to thylakoids, sediments with the heavy particles released from thylakoids after digitonin treatment, is soluble in chloroform/methanol and has an apparent molecular weight of about 26 000. The doublet also appears in the highly purified light-harvesting chlorophyll a/b binding complex isolated from thylakoids by hydrosylapatite chromatography. I conclude that two polypeptide components of the complex are phosphorylated. One of these components may be the major light-harvesting chlorophyll a/b binding protein.  相似文献   

5.
We have investigated the structure of the photosynthetic membrane in a mutant of barley known to lack a chlorophyll-binding protein. This protein is thought to channel excitation energy to photosystem II, and is known as the "light-harvesting chlorophyll-protein complex." Extensive stacking of thylakoids into grana occurs in both mutant and wild-type chloroplasts. Examination of membrane internal structure by freeze-fracturing indicates that only slight differences exist between the fracture faces of mutant and wild-type membranes. These differences are slight reductions in the size of particles visible on the EFs fracture face, and in the number of particles seen on the PFs fracture face. No differences can be detected between mutant and wild-type on the etched out surface of the membrane. In contrast, tetrameric particles visible on the etched inner surface of wild-type thylakoids are extremely difficult to recognize on similar surfaces of the mutant. These particles can be recognized on inner surfaces of the mutant membranes when they are organized into regular lattices, but these lattices show a much closer particle-to-particle spacing than similar lattices in wild-type membranes. Although several interpretations of these data are possible, these observations are consistent with the proposal that the light-harvesting chlorophyll-protein complex of photosystem II is bound to the tetramer (which is visible on the EFs face as a single particle) near the inner surface of the membrane. The large tetramer, which other studies have shown to span the thylakoid membrane, may represent an assembly of protein, lipid, and pigment comprising all the elements of the photosystem II reaction. A scheme is presented which illustrates one possibility for the light reaction across the photosynthetic membrane.  相似文献   

6.
We have constructed a tobacco psbA gene deletion mutant that is devoid of photosystem II (PSII) complex. Analysis of thylakoid membranes revealed comparable amounts, on a chlorophyll basis, of photosystem I (PSI), the cytochrome b6f complex and the PSII light-harvesting complex (LHCII) antenna proteins in wild-type (WT) and Δ psbA leaves. Lack of PSII in the mutant, however, resulted in over 10-fold higher relative amounts of the thylakoid-associated plastid terminal oxidase (PTOX) and the NAD(P)H dehydrogenase (NDH) complex. Increased amounts of Ndh polypeptides were accompanied with a more than fourfold enhancement of NDH activity in the mutant thylakoids, as revealed by in-gel NADH dehydrogenase measurements. NADH also had a specific stimulating effect on P700+ re-reduction in the Δ psbA thylakoids. Altogether, our results suggest that enhancement of electron flow via the NDH complex and possibly other alternative electron transport routes partly compensates for the loss of PSII function in the Δ psbA mutant. As mRNA levels were comparable in WT and Δ psbA plants, upregulation of the alternative electron transport pathways (NDH complex and PTOX) occurs apparently by translational or post-translational mechanisms.  相似文献   

7.
Summary A light-harvesting pigment-protein complex has been isolated fromMantoniella squamata (Micromonadophyceae, Chlorophyta) by nondenaturing polyacrylamide-gel electrophoresis. The complex runs as two bands of molecular weights 54,000 and 55,000. There are two constituent polypeptides of molecular weights 20,500 and 22,000. Antibodies were raised to the 20,500-dalton polypeptides from this complex and to the 24,500-dalton polypeptide from the analogous complex ofPedinomonas minor (Micromonadophyceae). The antibodies to theM. squamata polypeptide are specific for both polypeptides of theM. squamata light-harvesting complex, as well as for a 27,000-dalton polypeptide of undetermined function. The antibodies to theP. minor polypeptide are specific for polypeptide components of the light-harvesting complex of that alga. The antibodies specific for theM. squamata light-harvesting complex polypeptides do not cross react with any polypeptides ofP. minor thylakoid membranes, as demonstrated by crossed immunoelectrophoresis. Similarly, no polypeptides ofM. squamata thylakoids cross react with the antibodies specific forP. minor light-harvesting complex polypeptides. These results indicate that the light-harvesting complex ofM. squamata is structurally very different from that ofP. minor. In a survey of several land plants and green algae, including representatives of all classes of green algae, a light-harvesting complex homologous to that ofM. squamata was found only inMicromonas pusilla. All other organisms tested possessed a lightharvesting complex homologous to that ofP. minor. The evolutionary and taxonomic implications of the novelM. squamata light-harvesting complex are discussed.  相似文献   

8.
The CD3 mutant of wheat is a chlorophyll(Chlo-deficient mutant the phenotype of which depends upon the accumulation of the light-harvesting Chl a/b protein complex in leaves in response to the intensity of illumination. In the present studies, the rates of synthesis and/or uptake, and degradation of the light-harvesting Chl apoprotein in chloroplasts of wild-type wheat ( Triticum aestivum L. selection ND 496) and CD3 wheat leaf segments were examined in response to two different intensities of illumination. We were interested particularly in the 21. 23 kDa proteins of the light-harvesting Chl a/b complex of photosystem I (LHCI) and the 25. 27. 29 kDa proteins of the light-harvesting Chl a/b complex of photosystem II (LHCII). The accumulation of [35S]-Met into the light-harvesting Chl protein of CD3 wheat chloroplasts was impaired by a high but not by a low light fluence. The levels of radiolabel in the supernatant fractions of leaf tissue homogenates from the wild-type and CD3 wheats were not significantly different over time, suggesting that the cellular uptake of [35S]-Met was not limiting in the mutant. The high fluence did not enhance the degradation of light-harvesting Chl protein from CD3 wheat thylakoids. Our data indicate an impairment in the light-harvesting Chl protein synthesis/membrane uptake system in CD3 wheat leaves under high fluence. A recovery in levels of the inner LHCPII, but not of LHCPI, was observed in the Chl-deficient wheat mutant after a prolonged (4 days) exposure to high fluence. Under low fluence, LHCP was added to both photosystem II (PSH) and photosystem I (PSI) but only that added to PSI remained in thylakoids after seedlings were switched to high fluence.  相似文献   

9.
Treatment of Chlamydomonas reinhardtii thylakoids with cross-linking reagents including glutaraldehyde causes polymerization of all thylakoid polypeptides, but not of the reaction center II polypeptide D1 unless the thylakoids are presolubilized by octyl beta-D-glucoside (Adir, N., and Ohad, I. (1986) Biochim. Biophys. Acta 850, 264-274). The results presented here show that this is a general property of D1 as it can be demonstrated in thylakoids of cyanophytes, Dasicladaceae, green algae, and C3 and C4 plants. Solubilization of the membranes by ionic detergents, deoxycholate, lauryl sucrose, or dodecyl beta-D-maltoside is not effective in inducing cross-linking of the D1 polypeptides by glutaraldehyde. The most effective alkyl glucosides were those with 7-9 carbon alkyl chains. The same behavior toward glutaraldehyde was exhibited by the unprocessed D1 precursor and by the palmitoylated D1 protein. Based on the refractility of the D1 protein to cross-linking reagents, a procedure was developed for its isolation from cross-linked thylakoids by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Isolated D1 retained its behavior toward cross-linking by glutaraldehyde and generated tryptic fragments similar to those obtained following trypsin treatment of intact thylakoids. Denaturation of isolated D1 protein by acetone facilitates cross-linking by glutaraldehyde and extensive degradation by trypsin. The photosystem II polypeptides are differentially cross-linked with increasing concentrations of glutaraldehyde, the most susceptible being the 28- and 23-kDa components of the light-harvesting chlorophyll a-b protein complex and the core complex 44- and 51-kDa polypeptides, and the least affected being the cytochrome b559, the D2 protein, and a 24-kDa component of the light-harvesting chlorophyll a-b protein complex. These results reflect the relative position and interaction of the photosystem II polypeptides within the complex and suggest that strong and specific hydrophobic interactions may be responsible for the tight and stable conformation of D1. This may be based mostly on the conserved amino acid sequences of D1 and possibly plays a role in the process of D1 integration and removal from the reaction center during its light-dependent turnover.  相似文献   

10.
In recent years major progress has been made in describing the gene families that encode the polypeptides of the light-harvesting antenna system of photosystem II (PSII). At the same time, advances in the biochemical characterization of these antennae have been hampered by the high degree of similarity between the apoproteins. To help interpret the molecular results, we have re-examined the composition, the assembly and the phosphorylation patterns of the light-harvesting antenna of PSII (LHCII) in the green alga Chlamydomonas reinhardtii Dang, using a non-Tris SDS-PAGE system capable of resolving polypeptides that differ by as little as 200 daltons. Research to date has suggested that in C. reinhardtii the LHCII comprises just four polypeptides (p11, p13, p16 and p17), and CP29 and CP26 just one polypeptide each (p9 and p10, respectively), i.e. a total of six polypeptides. We report here that these antenna systems contain at least 15 polypeptides, 10 associated with LHCII, 3 with CP29, and 2 with CP26. All of these polypeptides have been positively identified by means of appropriate antibodies. We also demonstrate substantial heterogeneity to the pattern of in-vitro phosphorylation, with major differences found among members of closely spaced and immunologically related polypeptides. Most intriguing is the fact that the polypeptides that cross-react with the anti-type 2 LHCII antibodies of higher plants (p16, and to a lesser extent p11) are not phosphorylated, whereas in higher plants these are the most highly phosphorylated polypeptides. Also, unlike in higher plants, CP29 is heavily phosphorylated. Phosphorylation does not appear to have any effect on the mobility of polypeptides on fully denaturing SDS-PAGE gels. To learn more about the accumulation and organization of the light-harvesting polypeptides, we have also investigated a chlorophyll b-less mutant, cbn1-48. The LHCII is almost completely lost in this mutant, along with at least some LHCI. But the accumulation of CP29 and CP26 and their binding to PSII core complexes, is relatively unaffected. As expected, the loss of antenna polypeptides is accompanied by a reduction of the size of large reaction-center complexes. Following in-vitro phosphorylation the number of phosphorylated proteins is greatly increased in the mutant thylakoids compared to wildtype thylakoids. We present a model of the PSII antenna system to account for the new polypeptide complexity we have demonstrated.This work was supported by National Institute of Health grant GM22912 to L.A.S. We would like to thank Anastasios Melis for helpful discussions.  相似文献   

11.
Lutescens-1, a tobacco mutant with a maternally inherited dysfunction, displayed an unusual developmental phenotype. In vivo measurement of chlorophyll fluorescence revealed deterioration in photosystem II (PSII) function as leaves expanded. Analysis of thylakoid membrane proteins by polyacrylamide gel electrophoresis indicated the physical loss of nuclear- and chloroplast-encoded polypeptides comprising the PSII core complex concomitant with loss of activity. Freeze fracture electron micrographs of mutant thylakoids showed a reduced density, compared to wild type, of the EFs particles which have been shown previously to be the structural entity containing PSII core complexes and associated pigment-proteins. The selective loss of PSII cores from thylakoids resulted in a higher ratio of antenna chlorophyll to reaction centers and an altered 77 K chlorophyll fluorescence emission spectra; these data are interpreted to indicate functional isolation of light-harvesting chlorophyll a/b complexes in the absence of PSII centers. Examination of PSII reaction centers (which were present at lower levels in mutant membranes) by monitoring the light-dependent phosphorylation of PSII polypeptides and flash-induced O2 evolution patterns demonstrated that the PSII cores which were assembled in mutant thylakoids were functionally identical to those of wild type. We conclude that the lutescens-1 mutation affected the correct stoichiometry of PSII centers, in relation to other membrane constituents, by disrupting the proper assembly and maintenance of PSII complexes in lutescens-1 thylakoid membranes.  相似文献   

12.
The transverse heterogeneity of the polypeptides associated with the Photosystem I (PSI) complex in spinach thylakoid membranes and in a highly resolved PSI preparation has been studied using the impermeant chemical modifier, 2,4,6-trinitrobenzenesulfonate (TNBS) and the proteolytic enzyme, Pronase E. The present study has shown that the PSI reaction center polypeptide of ~62 kilodaltons and the 22 and 20 kilodalton polypeptides of the PSI light-harvesting chlorophyll protein (LHCPI) complex are not labeled by [14C]TNBS in unfractionated thylakoids. On the other hand, the 23 kilodalton polypeptide of the PSI LHCP and the 19 and 14 kilodalton polypeptides associated with the PSI primary electron acceptor complex are readily labeled by [14C]TNBS and are exposed to the stromal side of the thylakoid. Differences and similarities in the labeling of polypeptides associated with the PSI complex in thylakoids and in the isolated PSI complex are also noted. Treatment of thylakoids with pronase had no effect on the organization of the polypeptides in the LHCPI or the reaction center core complex, as manifested by the separation of these two subcomplexes from pronase-treated membranes. The 62, 19, and 14 kilodalton polypeptides associated with the reaction center core complex and the 23 and 22 kilodalton polypeptides associated with LHCPI are sensitive to pronase treatment while the 20 kilodalton polypeptide of LHCPI was inaccessible to the protease. The proteolysis of the 62 kilodalton polypeptide generated first a single immunodetectable fragment at about 48 kilodaltons, and further proteolytic digestion generated two other fragments at 30 and 17 kilodaltons respectively. These results are discussed in relation to the organization of the PSI complex in spinach thylakoids. A model for the transmembrane topography of the polypeptide constituents of PSI has been developed.  相似文献   

13.
The chlorophyll-protein and polypeptide composition of manganese deficient and control sugar beet thylakoids was examined using three different detergent-electrophoresis systems. On a per chlorophyll basis, manganese deficiency reduced the amounts of CPa complex (separated by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis), and CP 47 and CP 43 complexes (separated by octylglucoside/SDS-polyacrylamide gel electrophoresis) without decreasing the amounts of light harvesting complexes. Lithium dodecylsulfate/Triton X-100 polyacrylamide gel electrophoresis showed that manganese deficiency decreased several thylakoid polypeptides, including a chlorophyll b containing 30 kilodalton chlorophyll-protein complex, but did not decrease the amounts of 28 and 29 kilodalton light-harvesting chlorophyll b-containing polypeptides.  相似文献   

14.
Under high-light conditions, photoprotective mechanisms minimize the damaging effects of excess light. A primary photoprotective mechanism is thermal dissipation of excess excitation energy within the light-harvesting complex of photosystem II (LHCII). Although roles for both carotenoids and specific polypeptides in thermal dissipation have been reported, neither the site nor the mechanism of this process has been defined precisely. Here, we describe the physiological and molecular characteristics of the Chlamydomonas reinhardtii npq5 mutant, a strain that exhibits little thermal dissipation. This strain is normal for state transition, high light-induced violaxanthin deepoxidation, and low light growth, but it is more sensitive to photoinhibition than the wild type. Furthermore, both pigment data and measurements of photosynthesis suggest that the photosystem II antenna in the npq5 mutant has one-third fewer light-harvesting trimers than do wild-type cells. The npq5 mutant is null for a gene designated Lhcbm1, which encodes a light-harvesting polypeptide present in the trimers of the photosystem II antennae. Based on sequence data, the Lhcbm1 gene is 1 of 10 genes that encode the major LHCII polypeptides in Chlamydomonas. Amino acid alignments demonstrate that these predicted polypeptides display a high degree of sequence identity but maintain specific differences in their N-terminal regions. Both physiological and molecular characterization of the npq5 mutant suggest that most thermal dissipation within LHCII of Chlamydomonas is dependent on the peripherally associated trimeric LHC polypeptides.  相似文献   

15.
1. Isolated intact pea (Pisum sativum) chloroplasts incorporate [32P]orthophosphate into several thylakoid polypeptides in the light. Transfer of the labelled chloroplasts to darkness results in rapid dephosphorylation of the polypeptides. The most rapidly dephosphorylated phosphoproteins are the 26000-Mr doublet derived from the light-harvesting chlorophyll a/b binding complex. 2. Incubation of isolated 32P-labelled thylakoids in buffer in the absence of stromal components also results in rapid protein dephosphorylation. Again, the most rapidly dephosphorylated phosphoproteins are the 26000-Mr light-harvesting doublet. Dephosphorylation of all thylakoid phosphoproteins is accelerated by addition of up to 10 mM MgCl2. 3. The enzyme responsible for dephosphorylation is a phosphatase rather than a phosphotransferase or the thylakoid protein kinase acting in reverse. The enzyme is specifically and totally inhibited by NaF and does not require phosphoryl group acceptors such as ADP. Unlike the protein kinase, the phosphatase is indifferent to light and the electron transport inhibitor 3(3,4-dichlorophenyl)-1,1-dimethylurea. 4. The phosphorylated regions of the thylakoid phosphoproteins protrude from the outer surface of the membrane and are removed by trypsin treatment.  相似文献   

16.
The mutant pg 113, derived from Chlamydomonas reinhardii, arg2 mt+ (parent strain), completely lacks chlorophyll (Chl) b but is still able to grow under autotrophic conditions. The light-harvesting Chl a/b-protein complex (LHCP) is absent. This is shown (a) by the lack of the corresponding signal in the CD spectrum of thylakoids and (b) by the absence of the band of the LHCP after electrophoresis of partially solubilized thylakoid membranes on lithium dodecyl sulfate polyacrylamide gels. All the other chlorophyll-protein complexes are present. In spite of the absence of the LHCP, all the polypeptide components of this complex are present in the mutant in the same ratios as in the parent strain, although in slightly reduced amounts. The LHC apoproteins are synthesized, processed and transported into the thylakoid membrane of the mutant. Moreover, the phosphorylation of thylakoid membrane polypeptides, which is related to the regulation of the energy distribution between Photosystem I and II, is the same in the mutant and in the parent strain, indicating that phosphorylation is not dependent on the presence of Chl b. Electron micrographs of thin sections of whole cells show that there are stacked regions of thylakoids in both the mutant and the parent strain chloroplasts. However, in the mutant, stacks are located near the chloroplast envelope, while long stretches or sometimes circles of unstacked membranes are found in the interior, mostly around the pyrenoid.  相似文献   

17.
Polypeptides of the three major chlorophyll a + b protein complexes were detected in a chlorophyll-b-less barley mutant (chlorina f2) using immunological techniques. Antibodies to CP Ia, a photosystem I complex containing both the reaction center (CP I) and the chlorophyll a + b antenna (LHCI), detected substantial amounts of LHCI polypeptides in mutant thylakoids. Some polypeptides of the two photosystem-II-associated chlorophyll a + b complexes, CP 29 and LHCII, were also detected using antibodies raised against these complexes. The CP 29 apoprotein and the minor 25-kDa polypeptide of LHCII were present in amounts that could be seen by Coomassie blue staining. In contrast, the two major polypeptides of LHCII were greatly diminished in amount, and one of them may be completely absent. These data suggest that the absence of chlorophyll b may have differing effects on the synthesis, processing or turnover of the various chlorophyll a + b binding polypeptides. They also show that these polypeptides can be inserted into thylakoids in the absence of Chl b, and that significant amounts of some of them are accumulated in the mutant thylakoids.  相似文献   

18.
Summary iserum against two polypeptides of the major fucoxanthin-chlorophylla/c light-harvesting complex of the diatomPhaeodactylum tricornutum and heterologous antiserum against purified photosystem I particles of maize were used to localize these two complexes on the thylakoid membranes ofP. tricornutum. As in many chromophyte algae, the thylakoids are loosely appressed and organized into extended bands of three, giving a ratio of 21 for appressed versus non-appressed membranes. Immunoelectron microscopy demonstrated that the fucoxanthin-chlorophylla/c light-harvesting complex, which is believed to be associated with photosystem II, was equally distributed on the appressed and non-appressed thylakoid membranes. Photosystem I was also found on both types of membranes, but was slightly more concentrated on the two outer non-appressed membranes of each band. Similarly, photosystem I activity, as measured by the photooxidation of 3,3-diaminobenzidine, was higher in the outer thylakoids than in the central thylakoid of each band. We conclude that the thylakoids of diatoms differ from those of green algae and higher plants in their macromolecular organization as well as in their morphological arrangement.Abbreviations BSA bovine serum albumin - DAB 3,3-diaminobenzidine - FCPC fucoxanthin-chlorophylla/c light-harvesting complex - LHC light-harvesting complex - PBS phosphate-buffered saline - PS photosystem  相似文献   

19.
The mutant pg 113, derived from Chlamydomonas reinhardii, arg2 mt+ (parent strain), completely lacks chlorophyll (Chl) b but is still able to grow under autotrophic conditions. The light-harvesting Chl complex (LHCP) is absent. This is shown (a) by the lack of the corresponding signal in the CD spectrum of thylakoids and (b) by the absence of the band of the LHCP after electrophoresis of partially solubilized thylakoid membranes on lithium dodecyl sulfate polyacrylamide gels. All the other chlorophyll-protein complexes are present. In spite of the absence of the LHCP, all the polypeptide components of this complex are present in the mutant in the same ratios as in the parent strain, although in slightly reduced amounts. The LHC apoproteins are synthesized, processed and transported into the thylakoid membrane of the mutant. Moreover, the phosphorylation of thylakoid membrane polypeptides, which is related to the regulation of the energy distribution between Photosystem I and II, is the same in the mutant and in the parent strain, indicating that phosphorylation is not dependent on the presence of Chl b. Electron micrographs of thin sections of whole cells show that there are stacked regions of thylakoids in both the mutant and the parent strain chloroplasts. However, in the mutant, stacks are located near the chloroplast envelope, while long stretches or sometimes circles of unstacked membranes are found in the interior, mostly around the pyrenoid.  相似文献   

20.
When maize ( Zea mays L. cv. LG11) leaves are exposed to low temperatures and high light modifications to both photosystem 2 (PS2) and the light-harvesting chlorophyll a/b protein complex associated with photosystem 2 (LHC2) occur. This study examines the consequences of these modifications for phosphorylation of LHC2 and PS2 polypeptides and the associated changes in electron transport. Maize leaves were chilled at 5°C for 6 h under photon flux densities of 1 500 and 250 μmol m-2 s-1. Thylakoids were then isolated from the leaves and their abilities to phosphorylate LHC2 and PS2 polypeptides and modify electron transport activities were determined. Measurements of chlorophyll fluorescence induction in the thylakoids were also made. Thylakoids isolated from leaves chilled under high light and from leaves kept in the ambient growth environment had similar phosphoprotein profiles. However, polypeptide phosphorylation in thylakoids from the chilled leaves did not produce a decrease in PS2 electron transport. Chilling leaves under low light produced a decrease in the ability of isolated thylakoids to phosphorylate PS2, but not LHC2, polypeptides, which was not associated with any change in the phosphorylation-induced decrease in PS2 electron transport. Chilling under high, but not low, light appears to produce changes in membrane organisation that do not affect the ability of the thylakoids to phosphorylate PS2 and LHC2 polypeptides, but which do prevent the phosphorylation-induced decrease in excitation energy transfer from LHC2 to PS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号