首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptin and ghrelin are known to be main hormones involved in the control of food intake, with opposing effects. Here we have explored whether changes in the leptin and ghrelin system are involved in the long-term effects of high-fat (HF) diet feeding in rats and whether sex-associated differences exist. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or an HF-diet. Food intake and body weight were followed. Gastric and serum levels of leptin and ghrelin, and mRNA levels of leptin (in stomach and adipose tissue), ghrelin (in stomach), and NPY, POMC, and leptin and ghrelin receptors (OB-Rb and GHS-R) (in the hypothalamus) were measured. In both males and females, total caloric intake and body weight were greater under the HF-diet feeding. In females, circulating ghrelin levels and leptin mRNA expression in the stomach were higher under HF-diet. HF-diet feeding also resulted in higher hypothalamic NPY/POMC mRNA levels, more marked in females, and in lower OB-Rb mRNA levels, more marked in males. In addition, in females, serum ghrelin levels correlated positively with hypothalamic NPY mRNA levels, and these with caloric intake. In males, hypothalamic OB-Rb mRNA levels correlated positively with POMC mRNA levels and these correlated negatively with caloric intake and with body weight. These data reflect differences between sexes in the effects of HF-diet feeding on food intake control systems, suggesting an impairment of the anorexigenic leptin-POMC system in males and an over-stimulation of the orexigenic ghrelin-NPY system in females.  相似文献   

2.
Aldegunde M  Mancebo M 《Peptides》2006,27(4):719-727
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in mammals, but very little is known about NPY actions in fish. The present study investigated the role of NPY in food intake in the rainbow trout (Oncorhynchus mykiss). Food intake was monitored at different times after intracerebroventricular administration of porcine NPY (4 or 8 microg). Both doses significantly increased food intake at 2 and 3 h, and this effect was dose-dependent. However, 50 h after administration of NPY, food intake was significantly lower than in control fish, and cumulative food intake had returned to levels similar to those seen in the control group. The NPY antagonist (D-Tyr27,36, D-Thr32)-NPY (10 microg) inhibited food intake 2 h after icv administration, but did not block the orexigenic effect of NPY when administered jointly with 4 microg NPY. To identify the NPY receptor subtypes involved in the effects of NPY on food intake, we studied the effects of the Y1 receptor agonist (Leu31, Pro34)-NPY (4 microg), the Y2 receptor agonist NPY(3-36) (4 microg), and the highly specific Y5 receptor agonist (cPP(1-7), NPY19-23, Ala31, Aib32, Gln34)-hPP (4 microg). Short-term (2 h) food intake was moderately stimulated by the Y1 agonist, more strongly stimulated by the Y2 agonist, and unaffected by the Y5 agonist. We found that administration of NPY (8 microg icv) had no effect on aminergic systems in several brain regions 2 and 50 h after NPY administration. These results indicate that NPY stimulates feeding in the rainbow trout, and suggest that this effect is cooperatively mediated by Y2- and Y1-like NPY receptors, not by Y5-like receptors.  相似文献   

3.
SH Hong  KS Lee  SJ Kwak  AK Kim  H Bai  MS Jung  OY Kwon  WJ Song  M Tatar  K Yu 《PLoS genetics》2012,8(8):e1002857
Feeding behavior is one of the most essential activities in animals, which is tightly regulated by neuroendocrine factors. Drosophila melanogaster short neuropeptide F (sNPF) and the mammalian functional homolog neuropeptide Y (NPY) regulate food intake. Understanding the molecular mechanism of sNPF and NPY signaling is critical to elucidate feeding regulation. Here, we found that minibrain (mnb) and the mammalian ortholog Dyrk1a target genes of sNPF and NPY signaling and regulate food intake in Drosophila melanogaster and mice. In Drosophila melanogaster neuronal cells and mouse hypothalamic cells, sNPF and NPY modulated the mnb and Dyrk1a expression through the PKA-CREB pathway. Increased Dyrk1a activated Sirt1 to regulate the deacetylation of FOXO, which potentiated FOXO-induced sNPF/NPY expression and in turn promoted food intake. Conversely, AKT-mediated insulin signaling suppressed FOXO-mediated sNPF/NPY expression, which resulted in decreasing food intake. Furthermore, human Dyrk1a transgenic mice exhibited decreased FOXO acetylation and increased NPY expression in the hypothalamus, as well as increased food intake. Our findings demonstrate that Mnb/Dyrk1a regulates food intake through the evolutionary conserved Sir2-FOXO-sNPF/NPY pathway in Drosophila melanogaster and mammals.  相似文献   

4.
5.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

6.
7.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

8.
9.
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in vertebrates, mammals and fish. However, the present knowledge about feeding behaviour in fish is still limited and based on studies in a few species. The Brazilian flounder Paralichthys orbignyanus is being considered for aquaculture, and it is important to understand the mechanisms regulating feeding in order to improve its performance in captivity. The objectives of this study were to clone NPY cDNA, evaluate the mRNA levels in different tissues of flounder, and also evaluate brain NPY expression to associate food intake with NPY expression levels. A 597 bp NPY cDNA was cloned from Brazilian flounder brain. NPY expression was detected in all the peripheral tissues analysed. No significant differences were observed in brain NPY gene expression over 24 h after food intake at a temperature of 15 ± 3°C. No correlation was observed among plasma glucose, total protein, cholesterol, triglycerides and NPY expression levels during this 24 h period. On the other hand, mRNA levels were increased after two weeks of fasting at elevated temperatures. Our results suggest that NPY mRNA levels in Brazilian flounder are affected by temperature.  相似文献   

10.
Jacobson L 《Peptides》2000,21(10):1487-1493
To test if elevated CRH and decreased NPY might account for pituitary-adrenal activity and hypophagia in dietary protein deprivation, rats received normal or protein-free diet, or were food-or weight-restricted to match effects of protein deprivation. Protein or food restriction increased plasma ACTH. However, hypothalamic CRH mRNA was unchanged by protein deficiency and significantly decreased by food restriction when protein intake was > 50% of normal. Arcuate nucleus NPY mRNA increased in rats given protein-free diet, correlating with leptin rather than decreased feeding. We conclude that CRH and NPY gene expression does not explain adrenocortical axis or feeding activity in protein-deprived rats.  相似文献   

11.

Objective

Leptin resistance is a common hallmark of obesity. Rats on a free-choice high-fat high-sugar (fcHFHS) diet are resistant to peripherally administered leptin. The aim of this study was to investigate feeding responses to central leptin as well as the associated changes in mRNA levels in hypothalamic and mesolimbic brain areas.

Design and Methods

Rats on a CHOW or fcHFHS diet for 8 days received leptin or vehicle intracerebro(lateral)ventricularly (ICV) and food intake was measured 5 h and 24 h later. Four days later, rats were sacrificed after ICV leptin or vehicle and mRNA levels were quantified for hypothalamic pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) and for preproenkephalin (ppENK) in nucleus accumbens and tyrosine hydroxylase (TH) in ventral tegmental area (VTA).

Results

ICV leptin decreased caloric intake both in CHOW and fcHFHS rats. In fcHFHS, leptin preferentially decreased chow and fat intake. Leptin increased POMC and decreased NPY mRNA in CHOW, but not in fcHFHS rats. In CHOW rats, leptin had no effect on ppENK mRNA and decreased TH mRNA. In fcHFHS, leptin decreased ppENK mRNA and increased TH mRNA.

Conclusion

Despite peripheral and arcuate leptin resistance, central leptin suppresses feeding in fcHFHS rats. As the VTA and nucleus accumbens are still responsive to leptin, these brain areas may therefore, at least partly, account for the leptin-induced feeding suppression in rats on a fcHFHS diet.  相似文献   

12.
Many mammals experience spontaneous declines in their food intake and body weight near the end of life, a stage we refer to as senescence. We have previously demonstrated that senescent rats have blunted food intake responses to intracerebroventricular injections of neuropeptide Y (NPY). In the present study, we tested the hypothesis that responsiveness to GABA, a putative potentiator of NPY's effect, is also diminished. Young and old male F344 rats received injections of NPY, muscimol, (MUS, a GABA-A receptor agonist), combinations of these two agents, and vehicle [artificial cerebrospinal fluid (aCSF)] into the hypothalamic paraventricular nucleus (PVN). Both young and old presenescent rats increased their food intake in response to NPY, MUS, and the combination of the two (in comparison to injections of aCSF). The combination treatment was generally more effective than either NPY or MUS alone. These data are consistent with suggestions that both NPY and GABA play a role in the regulation of feeding behavior. Senescent rats exhibited an attenuated NPY-induced food intake, no increase in response to MUS, and a response to NPY + MUS that was no larger than that of NPY alone. We conclude that PVN injections of GABA, as well as NPY, are less effective in stimulating feeding in senescent rats and suggest that alterations in their signaling pathways play a role in the involuntary feeding decrease seen near the end of life.  相似文献   

13.
Recent studies have reinforced the view that the lateral hypothalamic area (LHA) regulates food intake and body weight. We identified leptin-sensitive neurons in the arcuate nucleus of the hypothalamus (Arc) that innervate the LHA using retrograde tracing with leptin administration. We found that retrogradely labeled cells in the Arc contained neuropeptide Y (NPY) mRNA or proopiomelanocortin (POMC) mRNA. Following leptin administration, NPY cells in the Arc did not express Fos but expressed suppressor of cytokine signaling-3 (SOCS-3) mRNA. In contrast, leptin induced both Fos and SOCS-3 expression in POMC neurons, many of which also innervated the LHA. These findings suggest that leptin directly and differentially engages NPY and POMC neurons that project to the LHA, linking circulating leptin and neurons that regulate feeding behavior and body weight homeostasis.  相似文献   

14.
We have studied the hypothalamic activity of the neuropeptide Y (NPY) system in dietary-induced obese male Wistar rats and examined whether the NPY antagonist, BW1229U91, can inhibit the hyperphagia during positive energy balance associated with feeding rats an energy-rich, highly palatable diet. Rats given a highly palatable, high-fat diet became obese after 8 weeks and exhibited hyperinsulinemia and hyperleptinemia, as compared to lean rats fed on standard pellet laboratory diet. Hypothalamic NPY mRNA concentrations were significantly reduced by approximately 70% in dietary-obese rats compared with lean controls, and the former were hypersensitive to intracerebroventricular injections of NPY, possibly as a result of NPY receptor up-regulation. Intracerebroventricular injections of BW 1229U91, that inhibits food intake in starved rats, did not alter food intake in either control or obese rats fed either standard pellet diet or the highly palatable diet, respectively. We conclude that dietary-obese rats have underactive hypothalamic NPYergic neurons compared to lean controls, possibly as a result of increased plasma concentrations of leptin and/or insulin that directly inhibit the NPY neuronal activity. The lack of effect of BW1229U91 on the increased caloric intake of dietary-obese rats suggests that the hyperphagia is not NPY-driven and supports the data indicating reduced synaptic activity of the hypothalamic NPY system.  相似文献   

15.
Neuropeptide Y (NPY) is considered the major stimulant for food intake in mammals and fish. Previous results indicate that NPY is involved in the feeding behaviour of the Brazilian flounder, Paralichthys orbignyanus. In this study, we evaluated hypothalamic NPY expression before (-2 h), during (0 h) and after feeding (+2 h) in two independent experiments: (1) during a normal feeding schedule and (2) in fish fasted for 2 weeks. During normal feeding, changes in the levels of NPY mRNA were periprandial, with expression levels being significantly elevated at meal time (P less than 0.05) and significantly reduced 2 h later (P less than 0.05). Comparing the fasting and unfasted groups, NPY mRNA levels were significantly higher (P less than 0.05) at -2 h and +2 h in the fasting group, but there was no difference at 0 h. In addition, the higher NPY mRNA levels that were observed in the fasting group were maintained throughout the sampling period. In summary, our results show that NPY expression was associated with meal time (0 h) in food intake regulation.  相似文献   

16.
We have examined the regulation of the orexigenic neurotransmitter, NPY, in hypothalamic slices of rat brain to discover whether the leptin or melanocortin receptor-4 (MCR-4) agonists, which act as satiety signals, can influence the release of this neurotransmitter. Basal and potassium-stimulated NPY release from hypothalamic slices was not significantly altered by the addition of recombinant murine leptin. However, the melanocortin-4 agonists, alpha-MSH and MT-II, significantly inhibited potassium-stimulated NPY release (p < 0.01) without significantly altering basal NPY release. However, the MCR-4 antagonist, agouti-related protein, did not significantly alter either basal or stimulated NPY release. In conclusion, hypothalamic NPY release can be attenuated by MCR-4 agonists, but not by leptin, suggesting that the activation of MCR-4 receptors leading to satiety can also further inhibit food intake through an inhibition of orexigenic NPYergic activity.  相似文献   

17.
Regulation of food intake by neuropeptide Y in goldfish   总被引:1,自引:0,他引:1  
In mammals, neuropeptide Y (NPY) is a potent orexigenic factor. In the present study, third brain ventricle (intracerebroventricular) injection of goldfish NPY (gNPY) caused a dose-dependent increase in food intake in goldfish, and intracerebroventricular administration of NPY Y1-receptor antagonist BIBP-3226 decreased food intake; the actions of gNPY were blocked by simultaneous injection of BIBP-3226. Goldfish maintained on a daily scheduled feeding regimen display an increase in NPY mRNA levels in the telencephalon-preoptic area and hypothalamus shortly before feeding; however, a decrease occured in optic tectum-thalamus. In both fed and unfed fish, brain NPY mRNA levels decreased after scheduled feeding. Restriction in daily food ration intake for 1 wk or food deprivation for 72 h resulted in increased brain NPY mRNA levels. Results from these studies demonstrate that NPY is a physiological brain signal involved in feeding behavior in goldfish, mediating its effects, at least in part, through Y1-like receptors in the brain.  相似文献   

18.
Objective: To model how consuming a low‐carbohydrate (LC) diet influences food intake and body weight. Research Methods and Procedures: Food intake and body weight were monitored in rats with access to chow (CH), LC‐high‐fat (HF), or HF diets. After 8 weeks, rats received intracerebroventricular injections of a melanocortin agonist (melanotan‐II) and antagonist (SHU9119), and feeding responses were measured. At sacrifice, plasma hormones and hypothalamic expression of mRNA for proopiomelanocortin (POMC), melanocortin‐4 receptor, neuropeptide Y (NPY), and agouti related protein (AgRP) were assessed. A second set of rats had access to diet (chow or LC‐HF) for 4 weeks followed by 24 h food deprivation on two occasions, after which food intake and hypothalamic POMC, NPY, and AgRP mRNA expression were measured. Results: HF rats consumed more food and gained more weight than rats on CH or LC‐HF diets. Despite similar intakes and weight gains, LC‐HF rats had increased adiposity relative to CH rats. LC‐HF rats were more sensitive to melanotan‐II and less sensitive to SHU9119. LC‐HF rats had increased plasma leptin and ghrelin levels and decreased insulin levels, and patterns of NPY and POMC mRNA expression were consistent with those of food‐deprived rats. LC‐HF rats did not show rebound hyperphagia after food deprivation, and levels NPY, POMC, and AgRP mRNA expression were not affected by deprivation. Discussion: Our results demonstrate that an LC diet influences multiple systems involved in the controls of food intake and body weight. These data also suggest that maintenance on an LC‐HF diet affects food intake by reducing compensatory responses to food deprivation.  相似文献   

19.
In mammals, feeding promotes protein accretion in skeletal muscle through a stimulation of the insulin- and amino acid- sensitive mammalian target of rapamycin (mTOR) signaling pathway, leading to the induction of mRNA translation. The purpose of the present study was to characterize both in vivo and in vitro the activation of several major kinases involved in the mTOR pathway in the muscle of the carnivorous rainbow trout. Our results showed that meal feeding enhanced the phosphorylation of the target of rapamycin (TOR), PKB, p70 S6 kinase, and eIF4E-binding protein-1, suggesting that the mechanisms involved in the regulation of mRNA translation are well conserved between lower and higher vertebrates. Our in vitro studies on primary culture of trout muscle cells indicate that insulin and amino acids regulate TOR signaling and thus may be involved in meal feeding effect in this species as in mammals. In conclusion, we report here for the first time in a fish species, the existence and the nutritional regulation of several major kinases involved in the TOR pathway, opening a new area of research on the molecular bases of amino acid utilization in teleosts.  相似文献   

20.
Objective: Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. Research Methods and Procedures: Recombinant adeno‐associated viral particles containing NPY (rAAV‐NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti‐related protein (AgRP), and pro‐opiomelanocortin in the arcuate nucleus were studied. Results: Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. Discussion: These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号