首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To compare the systemic efficacy of borage oil (Borago officinalis: BO) and gromwell (Lithospermum erythrorhizon), two plant species of the Boraginaceae family, epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut oil diet for 8 weeks. Subsequently, guinea pigs were fed diets of BO (group HBO), organic extract (group HGO), or water extract (group HGW) of gromwell for 2 weeks. In groups HGO and HGW, proliferation scores and the level of ceramides, the major lipid maintaining epidermal barrier, were similar with those in normal control group BO fed BO diet for 10 weeks. Despite accumulation of 15-hydroxyeicosatrienoic acid (15-HETrE), the potent anti-proliferative metabolite of γ-linolenic acid (GLA: major polyunsaturated fatty acid in BO), the reversal of epidermal hyperproliferation and the ceramide level of group HBO were less than those of groups HGO and HGW. Taken together, our data demonstrate that gromwell is more effective in reversing epidermal hyperproliferation with a marked increase in ceramides.  相似文献   

2.
Summary A transient increase in rosmarinic acid (RA) content in cultured cells of Lithospermum erythrorhizon was observed after addition of yeast extract (YE) to the suspension cultures, reaching a maximum at 24 hr. The highest increase of the RA content (2.5-fold) was obtained when 6-day-old cells in the exponential growth phase were treated with YE. Preceding the induced RA accumulation, phenylalanine ammonia-lyase (PAL) activity increased rapidly, whereas tyrosine aminotransferase (TAT) activity was largely unaffected by the treatment. The incorporation of both 14C-phenylalanine and 14C-tyrosine into RA was enhanced in the YE-treated cells, consistent with increased synthesis of the ester.Abbreviations 2,4-D 2,4 dichlorophenoxyacetic acid - PAL phenylalanine ammonia-lyase - TAT tyrosine aminotransferase - RA rosmarinic acid - YE yeast extract  相似文献   

3.
紫草提取物的体外抗氧化活性研究   总被引:5,自引:0,他引:5  
为研究紫草色素(LEP)的体外抗氧化活性,采用常规回流方法提取LEP,测定了LEP对超氧自由基(O2)和1,1-二苯基-2-苦苯肼自由基(DPPH.)的清除能力,及其对β-胡萝卜素/亚油酸自氧化体系的抑制作用。结果表明,LEP对DPPH.和O2均有较强的清除能力,并且对β-胡萝卜素/亚油酸自氧化体系有明显的抑制作用,说明紫草的药理作用可能与LEP较强的抗氧化能力有关。  相似文献   

4.
本文研究了螺旋藻、栅列藻和织线藻的水提物对新疆紫草和硬紫草细胞生长和色素形成的作用。结果表明不同种类的藻的提取物对不同紫草细胞作用呈现差异。在生长阶段,对新疆紫草,上述3种藻的低浓度提取物促进生长但作用不大,高浓度的螺旋藻和栅列藻提取物强烈抑制生长;对硬紫草,各种藻提取液的所有浓度处理均有促生长作用。在色素形成阶段,连续用高浓度织线藻提取物处理可以加速新疆紫草色素形成,同时提高色素含量。低浓度的织线藻提取液处理能提高硬紫草色素含量。栅列藻的水提物对两种紫草的色素形成均起抑制作用。螺旋藻水提物的适当浓度可加速两种紫草的色素形成。B_5培养基中加高浓度织线藻水提物,可抑制新疆紫草生长阶段的色素形成。  相似文献   

5.
6.
Lithospermum erythrorhizon , which are capable of producing red pigments, have been established. The red pigments were formed on the stems of L. erythrorhizon shoots cultured both on solid and in liquid media without phytohormones at 25 °C in the dark. Thin-layer chromatography, high-performance liquid chromatography and 1 H nuclear magnetic resonance analyses revealed that the red pigments which accumulated on the cultured shoots were shikonin derivatives. The effects of various basal media and phytohormones (indole-3-acetic acid, indole-3-butyric acid and kinetin) on the growth and the formation of shikonin derivatives were investigated. When the shoots were cultured on Murashige and Skoog solid medium, the addition of kinetin remarkably enhanced shikonin derivative accumulation in the shoots. However, these effects of kinetin were not observed in the liquid culture when cultured in Gamborg B5 medium. The maximum content of shikonin derivatives (2.3% as dry weight, ca. 1.5 mg/100 ml flask) was observed in the shoots cultured in phytohormone-free B5 liquid medium for 5 weeks. Received: 1 February 2000 / Revision received: 23 March 2000 / Accepted: 28 March 2000  相似文献   

7.
Shikonin, a red naphthoquinone pigment, is produced by cell cultures of Lithospermum erythrorhizon (Boraginaceae). It is biosynthetically derived from two key precursors, 4-hydroxybenzoate (4HB) and geranyldiphosphate (GPP). The bacterial ubiC gene, encoding chorismate pyruvate-lyase (CPL) which converts chorismate to 4-hydroxybenzoate, was expressed in L. erythrorhizon under the control of the strong (ocs)(3)mas-promoter. This introduced an efficient biosynthetic pathway to 4HB, i.e. a one-step reaction from chorismate, in addition to the endogeneous multi-step phenylpropanoid pathway. Feeding experiments with [1,7-(13)C(2)]shikimic acid showed that in the most active transgenic line, 73% of 4HB was synthesized via the genetically introduced pathway. However, there was no correlation between CPL activity and 4HB glucoside or shikonin accumulation in the transgenic lines. HMG-CoA reductase (HMGR) is involved in the biosynthesis of GPP in L. erythrorhizon. Two forms of HMGR1 of Arabidopsis thaliana were expressed in Lithospermum under control of the (ocs)(3)mas promoter. Only moderate increases in enzyme activity were obtained with the complete enzyme, but high activity was achieved using the soluble cytosolic domain of HMGR1. Shikonin accumulation remained unchanged even upon high expression of soluble HMGR.  相似文献   

8.
固定化培养的硬紫草细胞生长缓慢,仅包埋球外层的细胞生长明显。其蛋白质合成的量也低。培养30d的细胞色素产量达到4.2mg/gFW,相对色素分泌量达到70%,而色素的组成成分及各组分的比例也与悬浮细胞的不同。以正十六烷处理固定化细胞可促进产物释放,其不同的处理时间对细胞没有显著影响。连续培养的固定细胞保持其色素形成能力达80d之久,色素总产量达20mg/gFW。  相似文献   

9.
10.
The naphthoquinone pigment shikonin from Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae) was the first plant secondary metabolite produced in industrial scale from plant cell cultures. We have now manipulated the biosynthetic pathway leading to shikonin in L. erythrorhizon by introduction of the bacterial gene ubiA. This gene of Escherichia coli encodes 4-hydroxybenzoate-3-polyprenyltransferase, a membrane-bound enzyme that catalyzes a key step in ubiquinone biosynthesis. Using geranyl diphosphate (GPP) as substrate, it is able to catalyze the formation of 3-geranyl-4-hydroxybenzoate (GBA), a principal step of shikonin biosynthesis. The prokaryotic ubiA gene was fused to two signal sequences for targeting of the resulting peptide to the endoplasmic reticulum (ER). Constructs with different constitutive promoters were introduced into L. erythrorhizon using Agrobacterium rhizogenes-mediated transformation. In the resulting hairy root lines, high UbiA enzyme activities could be observed, reaching 133 pkat mg(-1). Expression of ubiA resulted in an accumulation of GBA in an amount exceeding that of the control culture by a factor of 50. However, the ubiA-transformed lines showed only a marginal (average 22%) increase of shikonin production in comparison to the control lines, and there was no significant correlation of UbiA enzyme activity and shikonin accumulation. This suggests that overexpression of ubiA alone is not sufficient to increase shikonin formation, and that further enzymes are involved in the regulation of this pathway.  相似文献   

11.
Rabdosiin and related caffeic acid metabolites have been proposed as active pharmacological agents demonstrating potent anti-HIV and antiallergic activities. We transformed Eritrichium sericeum and Lithospermum erythrorhizon seedlings by the rolC gene, which has been recently described as an activator of plant secondary metabolism. Surprisingly, the rolC-transformed cell cultures of both plants yielded two- to threefold less levels of rabdosiin and rosmarinic acid (RA) than respective control cultures. This result establishes an interesting precedent when the secondary metabolites are differently regulated by a single gene. We show that the rolC gene affects production of rabdosiin and RA irrespective of the methyl jasmonate (MeJA)-mediated and the Ca2+-dependent NADPH oxidase pathways. Cantharidin, an inhibitor of serine/threonine phosphatases, partly diminishes the rolC-gene inhibitory effect that indicates involvement of the rolC-gene-mediated signal in plant regulatory controls, mediated by protein phosphatases. We also show that the control MeJA-stimulated E. sericeum root culture produces (–)-rabdosiin up to 3.41% dry weight, representing the highest level of this substance for plant cell cultures reported so far.  相似文献   

12.
13.
Loscher R  Heide L 《Plant physiology》1994,106(1):271-279
The enzymatic formation of p-hydroxybenzoate from p-coumarate in cell-free extracts of cell cultures of Lithospermum erythrorhizon Sieb. et Zucc. was investigated. p-Coumaroyl-coenzyme A (p-coumaroyl-CoA) is the activated intermediate in this biosynthetic reaction. It is formed by an ATP-, Mg2+ -, and CoA-dependent 4-hydroxycinnamate:CoA ligase reaction. p-Coumaroyl-CoA is oxidized and cleaved to p-hydroxybenzoyl-CoA and acetyl-CoA in a thioclastic reaction in which NAD is an essential cofactor. These CoA esters are rapidly hydrolyzed to acetate and p-hydroxybenzoate, probably by thioesterases. The enzymes involved in the formation of p-hydroxybenzoate are soluble. p-Hydroxybenzalde-hyde is not an intermediate in this conversion, and S-denosylmethionine and uridine-5[prime]-diphosphoglucose do not enhance formation of p-hydroxybenzoate in our system.  相似文献   

14.
Stationary phase cell suspension cultures of Agrobacterium tumefaciens transformed Lithospermum erythrorhizon respond to additions of sucrose-rich (C-rich) medium with a 2-3-fold increase in the accumulation of shikonin derivatives and a 3-3.5-fold increase in the accumulation of soluble phenolics while showing a modest (10-30%) increase in cell concentration. Conversely, the addition of nitrate-rich (N-rich) medium resulted in 25-35% increase in biomass concentration but only 2-9% increase in shikonin production and approximately 3% increase in the yield of soluble phenolics. Repeated additions of C-rich medium resulted in only a modest (less than 10%) improvement in shikonin production over the levels obtained after the first application. No obvious correlation could be discerned between intracellular ATP levels or protein synthesis patterns and the pattern of shikonin accumulation following the addition of C-rich medium, suggesting that the precursor diversion mechanism is not generally applicable in our cell line. It was found that alternating feeding of N-rich and C-rich media could be used as an effective strategy for enhancing the productivity of plant secondary metabolite. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
16.
17.
18.
19.
This work demonstrates the use of low-energy ultrasound (US) to enhance secondary metabolite production in plant cell cultures. Suspension culture of Lithospermum erythrorhizon cells was exposed to low-power US (power density < or = 113.9 mW/cm(3)) for short periods (1-8 min). The US exposure significantly stimulated the shikonin biosynthesis of the cells, and at certain US doses, increased the volumetric shikonin yield by about 60%-70%. Meanwhile, the shikonin excreted from the cells was increased from 20% to 65%-70%, due partially to an increase in the cell membrane permeability by sonication. With combined use of US treatment and in situ product extraction by an organic solvent, or the two-phase culture, the volumetric shikonin yield was increased more than two- to threefold. Increasing in the number of US exposures during the culture process usually resulted in negative effects on shikonin yield but slight stimulation of shikonin excretion. US at relatively high energy levels caused slight cell growth depression (maximum 9% decrease in dry cell weight). Two key enzymes for the secondary metabolite biosynthesis of cells, phenylalanine ammonia lyase and p-hydroxybenzoic acid geranyltransferase, were found to be stimulated by the US. The US stimulation of secondary metabolite biosynthesis was attributed to the metabolic activity of cells activated by US, and more specifically, the defense responses of plant cells to the mechanical stress of US irradiation.  相似文献   

20.
Sialidases are enzymes that catalyze the hydrolysis of sialic acid residues from various glycoconjugates, which are widely found in a number of viral and microbial pathogens. In this study, we investigated the biological evaluation of isolated six shikonins (1-6) and three shikonofurans (7-9) from Lithospermum erythrorhizon. The nine isolated compounds 1-9 showed strong and selective inhibition of glycosyl hydrolase (GH) 33 and -34 sialidases activities. In GH33 bacterial-sialidase inhibition assay, the inhibitory activities against GH33 siadliase of all shikonofuran derivatives (7-9) were greater than shikonin derivatives (1-6). Shikonofuran E (8) exhibited the most potent inhibitory activity toward GH33 sialidases (IC(50)=0.24μM). Moreover, our detailed kinetic analysis of these species unveiled that they are all competitive and simple reversible slow-binding inhibitors. Otherwise, they showed different inhibitory capacities and kinetic modes to GH34 viral-sialidase activity. All the naphthoquinone derivatives (1-6) were of almost equal efficiency with IC(50) value of 40μM and shikonofurans (7-9) did not show the significant inhibitory effect to GH34 sialidase. Kinetic analyses indicated that naphthoquinones acted via a noncompetitive mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号