首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ice nucleation temperatures of individual leaves were determined by a tube nucleation test. With this assay, a direct quantitative relationship was obtained between the temperatures at which ice nucleation occurred on individual oat (Avena sativa L.) leaves and the population sizes of ice nucleation active (INA) bacteria present on those leaves. In the absence of INA bacteria, nucleation of supercooled growth-chamber grown oat leaves did not occur until temperatures were below approximately −5°C. Both nucleation temperature and population size of INA bacteria were determined on the same individual, field-grown oat leaves. Leaves with higher ice nucleation temperatures harbored larger populations of INA bacteria than did leaves with lower nucleation temperatures. Log10 mean populations of INA bacteria per leaf were 5.14 and 3.51 for leaves with nucleation temperatures of −2.5°C and −3.0°C, respectively. Nucleation frequencies (the ratio of ice nuclei to viable cells) of INA bacteria on leaves were lognormally distributed. Strains from two very different collections of Pseudomonas syringae and one of Erwinia herbicola were cultured on nutrient glycerol agar and tested for nucleation frequency at −5°C. Nucleation frequencies of these bacterial strains were also lognormally distributed within each of the three sets. The tube nucleation test was used to determine the frequency with which individual leaves in an oat canopy harbored large populations of INA bacteria throughout the growing season. This test also predicted relative frost hazard to tomato (Lycopersicon esculentum Mill) plants.  相似文献   

2.
Expression of a bacterial ice nucleation gene in plants   总被引:3,自引:0,他引:3       下载免费PDF全文
We have introduced an ice nucleation gene (inaZ) from Pseudomonas syringae pv. syringae into Nicotiana tabacum, a freezing-sensitive species, and Solanum commersonii, a freezing-tolerant species. Transformants of both species showed increased ice nucleation activity over untransformed controls. The concentration of ice nuclei detected at −10.5°C in 15 different primary transformants of S. commersonii varied by over 1000-fold, and the most active transformant contained over 100 ice nuclei/mg of tissue. The temperature of the warmest freezing event in plant samples of small mass was increased from approximately −12°C in the untransformed controls to −4°C in inaZ-expressing transformants. The threshold nucleation temperature of samples from transformed plants did not increase appreciably with the mass of the sample. The most abundant protein detected in transgenic plants using immunological probes specific to the inaZ protein exhibited a higher mobility on sodium dodecyl sulfate polyacrylamide gels than the inaZ protein from bacterial sources. However, some protein with a similar mobility to the inaZ protein could be detected. Although the warmest ice nucleation temperature detected in transgenic plants is lower than that conferred by this gene in P. syringae (−2°C), our results demonstrate that the ice nucleation gene of P. syringae can be expressed in plant cells to produce functional ice nuclei.  相似文献   

3.
Freezing and high temperature thresholds of photosystem 2 (PS2), ice formation and frost and heat damage were measured in leaves of evergreen subalpine plants under conditions of naturally low (winter) to high (summer) PS2 efficiencies (FV/FM). The temperature‐dependent change in basic Chl fluorescence (F0) (T‐F0) technique that is usually used to assess the high temperature threshold of PS2 in a new approach was applied to test freezing temperature thresholds of PS2. T‐F0 curves (+5 °C to ?10 °C at 2 K h?1) revealed a significant, sudden increase in F0 on extracellular ice formation (?4.0 or ?5.5 °C). The rise in F0 was recorded 0.3–0.6 K below ice nucleation (10–20 min later) and was produced by freeze dehydration of cells. The rise in F0 was not caused by frost damage, as during winter LT50 was lower than ?27 °C and not by formation of ice on the leaf surface. Hence, F0 measurements during freezing are a useful tool to distinguish between surface ice and extracellular ice inside the leaf tissue which cannot be differentiated by other ice‐detecting methods. PS2 efficiency significantly affected the shape of the high temperature T‐F0 curves (20–65 °C at 1 K min?1). Under FV/FM >0.6, two F0 maxima were recorded. The fast rise phase to the first F0 maximum corresponded with tissue heat damage (LT50: 46.9–54.3 °C). The second F0 maximum occurred at leaf temperatures between 55 and 60 °C. Under FV/FM <0.2 only, the second F0 maximum was detectable. Lack of awareness of the missing F0 maximum would lead to an overestimation of the PS2 high temperature threshold by >10 K; hence, under low FV/FM, it cannot be determined by the T‐F0 technique.  相似文献   

4.
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0°C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between −3.5° and −8.5°C. However, if ice initiation in the supercooled leaves occurred at any temperature below −2.6°C, the leaves were lethally injured.

To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above −1°C. They had threshold temperatures of −0.7° and −0.8°C, respectively, for freezing in distilled H2O. Although freezing could be initiated in the Solanum leaves above −1°C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between −2.5° and −6.5° using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant.

  相似文献   

5.
The changes in ice nucleation activity of transformed Ina+ Escherichia coli K12 after infection with T4D bacteriophage have been examined. Within 2 min after infection class A nucleation activity (measured at -4 degrees C) fell about 100-1000-fold whilst class B (measured at -5.5 degrees C) and class C (measured at -9 degrees C) nucleation activities increased 50-100-fold and then rapidly decreased. These changes also occurred after interaction with T4D ghost particles or T4D 11-/12- particles. Since ghost particles lack DNA and 11-/12- particles lack short tail fibres, the T4D particles appear to be exerting their effect by the attachment of the phage long tail fibres to the cell. The changes were not influenced by the addition of chloramphenicol.  相似文献   

6.
冰核细菌生物学特性及其诱发植物霜冻机理与防霜应用   总被引:16,自引:1,他引:16  
孙福在  赵廷昌 《生态学报》2003,23(2):336-345
就国内外有关冰核细菌生物学特性及其诱发植物霜冻机理与防霜应用的研究进展作以概述。阐述了冰核细菌种类、分布、影响冰核活性的成冰因素,冰核活性等级划分、冰核细菌保存方法以及冰核细菌诱发植物霜冻机理;简介了冰核细菌分子生物学研究进展;药剂和生防菌能够防除植物上冰核细菌减轻或控制霜冻危害,并已取得成效,是防御植物霜冻的一条新途径。  相似文献   

7.
The bacterial ice nucleation gene inaZ confers production of ice nuclei when transferred into transgenic plants. Conditioning of the transformed plant tissue at temperatures near 0°C greatly increased the ice nucleation activity in plants, and maximum ice nucleation activity was achieved only after low-temperature conditioning for about 48 h. Although the transgenic plants contain similar amounts of inaZ mRNA at both normal and low temperatures, low temperatures are required for accumulation of INAZ protein. We propose that the stability of the INAZ protein and thus ice nucleation activity in the transgenic plants is enhanced by low-temperature conditioning.  相似文献   

8.
Factors affecting ice nucleation in plant tissues   总被引:2,自引:2,他引:2       下载免费PDF全文
Factors affecting the ice nucleation temperature of plants and plant tissues were examined. The mass of a sample had a marked effect on ice nucleation temperature. Small tissue samples supercooled to −10°C and were not accurate predictors of the nucleation temperature of intact plants in either laboratory or field experiments. This effect was not unique to plant tissues and was observed in autoclaved and control soil samples. Ice nucleation temperatures of bean, corn, cotton, and soybean seedlings were influenced by the length of subzero exposure, presence of ice nucleation active bacteria, and leaf surface wetness. The number of factors influencing ice nucleation temperature suggested that predicting the freezing behavior of plants in the field will be complex.  相似文献   

9.
Bacterial injury: a review.   总被引:19,自引:0,他引:19  
  相似文献   

10.
《Cryobiology》2016,73(3):239-243
This paper presents an innovative technological platform which is based on infrared video recording and is used for monitoring multiple ice nucleation events and their interactions, as they happen in 96 well microplates. Thousands of freezing curves were obtained during this study and the following freezing parameters were measured: cooling rate, nucleation point, freezing point, solidus point, degree of supercooling, duration of dendritic phase and duration of crystal growth. We demonstrate the use of this platform in the detection of ice nuclei in plant samples. Future applications of this platform may include breeding for frost tolerance, cryopreservation, frozen food technology and atmospheric sciences.  相似文献   

11.
An emulsion droplet formation procedure was employed to isolate yeast cells and, in separate experiments, human red blood cells, one from another in individual droplets, and to segregate extraneous materials catalyzing the formation of ice. Emulsification succeeded in isolating the cells and permitted the observation of the supercooling of droplets containing cells whereby each droplet was observed to nucleate ice at a temperature that depended only upon the components of the droplet. The droplet formation procedures were characterized. It was shown that the surface coatings and the carrier fluids used in the preparation of the emulsions did not act as ice nucleators. It was, in this manner, possible to study the nucleation of ice brought about by supercooling and homogeneous nucleation in the volume of the droplet or by the catalysis of nucleation on or in the cells contained in the droplets. It was shown that yeast cells and red blood cells could each be supercooled to about ?40 °C in short-term experiments. The results also revealed that yeast cells did not store for infinite times at temperatures above the observed upper limit of homogeneous nucleation. The yeast cells died at rates that were exponential functions of time at ?20, ?22.5, ?25, ?29 and ?33 °C. The temperature dependence of the death rate did not correspond to a process with a normal Arrhenius activation energy. The temperature dependence did, however, suggest a potentiated heterogeneous catalysis of ice resulting in the death of the yeast cells.  相似文献   

12.
Cells of ice nucleation active bacterial species catalyse ice formation over the temperature range of -2 to -12°C. Current models of ice nucleus structure associate the size of ice nucleation protein aggregates with the temperature at which they catalyse ice formation. To better define the structural features of ice nucleation proteins responsible for the functional heterogeneity of ice nuclei within a genetically homogeneous collection of cells we used in vitro chemical mutagenesis to isolate mutants with reduced ability to nucleate ice at warm assay temperatures but which retain normal or near normal nucleation activity at cold temperatures (WIND, i.e. w arm i ce n ucleus-d eficient mutants). Nearly half of the mutants obtained after hydroxylamine mutagenesis of the iceE gene from Erwinia herbicola had this phenotype. The phenotypes and location of lesions on the genetic map of iceE were determined for a number of mutants. All WIND mutations were restricted to the portion of iceE encoding the repetitive region of the poty peptide. DNA sequencing of two WIND mutants revealed single nucleotide substitutions changing a conserved serine or glycine residue to phenylalanine and serine, respectively. The implications of these findings in structure/function models for the ice nucleation protein are discussed.  相似文献   

13.
Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9 °C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria.  相似文献   

14.
15.
A differential scanning calorimeter has been developed for the automatic detection and measurement of dropwise freezing within a sample of 100-200 water drops. A typical drop size of 1 microliter is employed. The sample is distributed on flat, square (4-cm) thermoelectric sensors and the temperature is scanned downward by conductive cooling to a liquid nitrogen bath. The rate of cooling, typically 1 degree C/min, is set by the choice of a heat conduction rod between the calorimeter and the liquid nitrogen bath. The voltages from the thermopiles along with a system temperature-measuring thermocouple are continuously monitored by digital voltmeters and recorded every half-second in a computer memory. A freezing event in a drop is detected by a characteristic voltage signal whose integral with time is proportional to the size of the drop and its heat of fusion. The half-life of a freezing event signal is 10 s for a 1-microliter drop. The integrated signal produced from multiple freezing events is shown to provide a direct measure of the number of drops frozen at a given temperature. A distribution curve and its smoothed derivative can be constructed directly from these measurements. The instrument, which is termed an "ice nucleometer," is illustrated in determining the ice nucleation distribution in a population of Escherichia coli harboring cloned ice nucleation genes.  相似文献   

16.
The translocation of proteins to cyanobacterial cell envelope is made complex by the presence of a highly differentiated membrane system. To investigate the protein translocation in cyanobacterium Synechococcus PCC 7942 using the truncated ice nucleation protein (InpNC) from Pseudomonas syringae KCTC 1832, the green fluorescent protein (GFP) was fused in frame to the carboxyl-terminus of InpNC. The fluorescence of GFP was found almost entirely as a halo in the outer regions of cells which appeared to correspond to the periplasm as demonstrated by confocal laser scanning microscopy, however, GFP was not displayed on the outermost cell surface. Western blotting analysis revealed that InpNC-GFP fusion protein was partially degraded. The N-terminal domain of InpNC may be susceptible to protease attack; the remaining C-terminal domain conjugated with GFP lost the ability to direct translocation across outer membrane and to act as a surface display motif. The fluorescence intensity of cells with periplasmic GFP was approximately 6-fold lower than that of cells with cytoplasmic GFP. The successful translocation of the active GFP to the periplasm may provide a potential means to study the property of cyanobacterial periplasmic substances in response to environmental changes in a non-invasive manner.  相似文献   

17.
The expression level of an ice nucleation gene (inaZ) was varied in Escherichia coli to observe the relationship between activity and gene product. The ice nucleation activity increased as the 2nd to 3rd power of the membrane concentration of the inaZ gene product, implying that molecules of InaZ protein interact cooperatively in groups of two to three at the rate-limiting step of ice nucleus assembly. The 2nd to 3rd power relationship was independent of the threshold temperature at which ice nucleation was measured and was consistent over a 500-fold range of protein concentration. Such a relationship indicates that the same rate-limiting step must be common to the formation of ice nuclei displaying all the various threshold temperatures within a bacterial population. Observations of Pseudomonas syringae, expressing the inaZ gene at various levels, were consistent with a similar relationship and hence a similar mechanism of ice nucleus assembly in Pseudomonas.  相似文献   

18.
19.
We tested the nucleation activity (INA) of 122 strains of plant pathogenic bacteria (12 varieties and 15 subspecies) stored in collection of the University of Göttingen (GSPB). The strains are isolates from diverse host plants and different geographic regions. One-hundred and seven isolates belong to the Pseudomonads, nine to the genus Erwinia and six to the Xanthomonas. The INA was analysed by ?3°, ?5°, ?7° and ?9°C. The observed value of INA cells ranged from non-detectable to a maximum concentration of ice nuclei in a range from ?7.85 at ?5°C to ?2.63 at ?3°C in 1.82 × 103 cfu to 3.3 × 103 cfu per ml. The data indicated that 71 (58.2%) of the 122 strains had INA cells, and 51 (41.8%) were inactive. The highest amount of strains with INA cells we found in Pseudomonads (69). In comparison only one strain was active at Erwinia and at Xanthomonas, 46 strains were isolated from the genus Phaseolus vulgaris and 6 from the genus Beta vulgaris. The other isolates with ice active cells belonged to the 13 other plant species. The 51 inactive pathovars were isolated from 21 different culture plants. The pathogens under test were isolated in 16 different countries, mainly in Germany and USA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号