首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The role of platelet-activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in initiating glycogen breakdown in the fetal rabbit lung was assessed by intraperitoneal administration of this potent ether-linked glycerophospholipid. Forty-five min after in utero injection of PAF (2.5 X 10(-7) mol), fetal pulmonary and hepatic glycogen concentrations were reduced from 326 to 256 and from 9.8 to 6.6 micrograms of glycogen/mg protein, respectively. Glycolytic activity was similarly increased as judged by an elevation of lactate (2-fold) in lung, liver, and plasma upon PAF injection. These actions of PAF were dose- and time-dependent. The glycogenolytic response did not occur when an equimolar dose of the inactive enantiomer, D-PAF was injected. Pretreatment of the fetus with a specific PAF receptor antagonist, SRI-63-441, prevented the PAF response. We have previously demonstrated (Hoffman, D. R., Truong, C. T., and Johnston, J. M. (1986) Biochim. Biophys. Acta 879, 88-96) that PAF biosynthesis and PAF concentrations increase significantly on day 24 of fetal rabbit lung development. A concurrent decrease in pulmonary glycogen concentration at this point of gestation is potentially reflective of the PAF-induced action. Thus, these observations would suggest a role for PAF in the normal physiology of fetal lung maturation.  相似文献   

2.
J Sugatani  D Y Lee  K T Hughes  K Saito 《Life sciences》1990,46(20):1443-1450
A novel, facile and sensitive scintillation proximity radioimmunoassay (SPRIA) for quantitation of PAF has been developed. No separation of antibody bound [3H]PAF from free [3H]PAF is required as the assay employs protein A - coated fluomicrospheres (beads containing scintillant). The assay system was suitable for the quantitation of 0.03 to 2 pmol of 1-hexadecyl-2-acetyl-sn-glycero-3- phosphocholine. The cross-reactivity was high with 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine but was very low with PAF analogs such as 1-alkyl- and 1-acyl-2-lyso-sn-glycero-3-phosphocholine, 1-acyl-2-acetyl-sn-glycero-3-phosphocholine, and 1-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphocholine. The specificity of SPRIA was higher than that of bioassay (platelet degranulation assay). PAF receptor antagonists (L-652,731, WEB2086, and FR900452) at up to 10 nmol per tube had no affect on the SPRIA. These observations indicate that the specificity of the PAF antibody is quite different from that of the platelet receptor. The values obtained using SPRIA for the measurement of PAF produced in polymorphonuclear leukocytes with stimuli are comparable to those obtained by SIM/GC/MS analysis.  相似文献   

3.
The enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) was purified from rat spleen approx. 1500-fold in 1.6% yield. The specific activity of the purified enzyme was 0.317 +/- 0.089 mumol/min per mg of protein (mean +/- S.D., n = 6). The Km for the substrate acetyl-CoA was 137 +/- 13 microM and the pH optimum was about 8. Incubation of the purified enzyme was 1-O-[3H]octadecyl-2-lyso-sn-glycero-3-phosphocholine followed by electrophoresis resulted in the incorporation of radioactivity into a protein of Mr 29,000. The enzyme was most active towards 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine as substrate, 1-palmitoyl-2-lyso-glycero-3-phosphocholine being a poor substrate. In addition, the enzyme preferred acetyl-CoA to palmitoyl-CoA or oleoyl-CoA as substrate.  相似文献   

4.
1-Alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase catalyzes the conversion of biologically inactive lysophospholipid to bioactive platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) by an acetylation reaction. The activity of this enzyme in eosinophils isolated from patients with eosinophilia is stimulated (up to 4-fold) in a dose-, time-, and Ca2+/Mg2+-dependent manner after exposure to the eosinophil chemotactic factor of anaphylaxis (ECF-A), C5a, formyl-methionylleucylphenylalanine (fMLP), or ionophore A23187. The three naturally occurring chemotactic factors (ECF-A, C5a, and fMLP) cause a rapid and transient increase of enzyme activity, with a maximum at 1 or 3 min, whereas ionophore A23187 maintains an elevated level for up to 15 min. The activity of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine acetylhydrolase, an enzyme that catalyzes the breakdown of PAF to lyso-PAF, is not affected by C5a, fMLP, or ionophore A23187. The presence of PAF in eosinophils was established by demonstrating the lipid nature of the compound, the RF value being identical with that of synthetic 1-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine on thin layer chromatograms, and by its ability to induce serotonin release from rabbit platelets. Furthermore, ECF-A, C5a, fMLP, and ionophore A23187 all induce the secretion of PAF from eosinophils. These findings suggest that the generation and release of PAF could be a consequence of eosinophil chemotactic activation and may thus function in inflammatory and allergic reactions in which eosinophils participate.  相似文献   

5.
Serum from numerous mammals and lower vertebrates contains an enzyme activity that is specific for the hydrolysis of the acetate moiety of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF, platelet activating factor). Acetylhydrolase (EC 3.1.1.47, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine acetylhydrolase) was found in all mammalian sera with activity ranging from 11 (fetal calf) to 178 (rabbit) pmol acetate liberated/microliter serum/min. The enzyme is not present in avian serum but is a constituent of reptiles and bony fishes.  相似文献   

6.
Final steps in the synthesis of platelet activating factor (PAF) occur via two enzymatic reactions: the acetylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine by a specific acetyltransferase or the transfer of the phosphocholine base group from CDP-choline to 1-alkyl-2-acetyl-sn-glycerol by a dithiothreitol (DTT)-insensitive cholinephosphotransferase. Our studies demonstrate that rat kidney inner medulla microsomes synthesize PAF primarily via the DTT-insensitive cholinephosphotransferase since the specific activity of this enzyme is greater than 100-fold higher than the acetyltransferase. The two cholinephosphotransferases that catalyze the biosynthesis of phosphatidylcholine and PAF have similar Mg2+ or Mn2+ requirements and are inhibited by Ca2+. Also topographic experiments indicated that both activities are located on the cytoplasmic face of microsomal vesicles. PAF synthesis was slightly stimulated by 10 mM DTT, whereas the enzymatic synthesis of phosphatidylcholine was inhibited greater than 95% under the same conditions. The concept of two separate enzymes for PAF and phosphatidylcholine synthesis is further substantiated by the differences in the two microsomal cholinephosphotransferase activities with respect to pH optima, substrate specificities, and their sensitivities to temperature, deoxycholate, or ethanol. Study of the substrate specificities of the DTT-insensitive cholinephosphotransferase showed that the enzyme prefers a lipid substrate with 16:0 or 18:1 sn-1-alkyl chains. Short chain esters at the sn-2 position (acetate or propionate) are utilized by the DTT-insensitive cholinephosphotransferase, but analogs with acetamide or methoxy substituents at the sn-2 position are not substrates. Also, CDP-choline is the preferred water-soluble substrate when compared to CDP-ethanolamine. Utilization of endogenous neutral lipids as a substrate by the DTT-insensitive cholinephosphotransferase demonstrated that sufficient levels of alkylacetylglycerols are normally present in rat kidney microsomes to permit the synthesis of physiological quantities of PAF. These data suggest the renal DTT-insensitive cholinephosphotransferase could be a potentially important enzyme in the regulation of systemic blood pressure.  相似文献   

7.
The subcellular distribution of an alkyllyso-GPC: acetyl-CoA acetyltransferase (EC 2.3.1.67) and transacylase, two important enzyme activities involved in the remodeling pathway for the biosynthesis of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) have been examined in leukocytes isolated from the pronephros of the rainbow trout, Oncorhynchus mykiss. Contrary to mammalian systems, in which the acetyltransferase is localized to intracellular membranes, the subcellular distribution of an acetyltransferase activity in rainbow trout leukocytes was localized to the plasma membrane. Analysis of the acetyltransferase products by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) confirmed synthesis of two subclasses of PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine and 1-acyl-2-acetyl-sn-glycero-3-phosphocholine. The transacylase activity in this study was detected in membrane fractions in two domains of the intermediate density region which also contained the NADH dehydrogenase activity, a marker enzyme for the endoplasmic reticulum. Acylation of lysoPAF (1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine) exhibited approximately 95% specificity for omega-3 fatty acids. Acylation patterns were not significantly different in either domain of the endoplasmic reticulum. A model is proposed herein for the metabolism of PAF in rainbow trout leukocytes.  相似文献   

8.
The biosynthesis of platelet-activating factor (PAF), a phospholipid autocoid with potent ulcerogenic properties that is produced in secretory exocrine glands by physiological secretagogues, was assessed in microsomal preparations of glandular gastric mucosa. For this purpose, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF):acetyl-CoA acetyltransferase (EC 2.3.1.67); the enzymes of the 'de novo' pathway: 1-O-alkyl-2-lyso-sn-glycero-3-phosphate (alkyl-lyso-GP):acetyl-CoA acetyltransferase and 1-O-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G):CDP-choline cholinephosphotransferase (EC 2.7.8.16); and some enzymes involved in the catabolism of PAF and lyso-PAF were assayed. Only the enzymes of the 'de novo' pathway and small amounts of PAF acetylhydrolase, phospholipase A2 and a lysophospholipase D acting on either lipids could be detected in the gastric preparations, whereas lyso-PAF:acetyl-CoA acetyltransferase activity was undetectable. The specific activity of alkyl-lyso-GP:acetyl-CoA acetyltransferase in the gastric mucosa was about one-tenth of that found in spleen microsomes and its apparent Km for acetyl-CoA was 454 microM compared with 277 microM in spleen microsomes. Glandular mucosa homogenates contained preformed PAF at a concentration of 2.7 +/- 0.7 ng equivalents of PAF (hexadecyl)/mg of protein. When gastric microsomes were incubated with micromolar concentrations of fatty acids (arachidonic, palmitic and oleic) prior to the assay of dithiothreitol (DTT)-insensitive cholinephosphotransferase, a dose-dependent reduction in the formation of PAF was observed, arachidonic acid being the most potent inhibitor, followed by linoleic acid (only tested on spleen microsomes) and oleic acid. By contrast, 1,2-diolein and phosphatidylcholine (dipalmitoyl) showed no or little effect. These results indicate that glandular gastric mucosa can produce PAF through the 'de novo' pathway, and that fatty acids, especially unsaturated, can reduce that synthesis by modulating the expression of DTT-insensitive cholinephosphotransferase.  相似文献   

9.
1-Alkyl-2-acetyl-sn-glycero-3-phosphocholine (alkylacetyl-GPC, platelet activating factor (PAF] can be biosynthesized either by acetylation of alkyllyso-GPC through a remodeling pathway or by the transfer of phosphocholine to alkylacetyl-sn-glycerol (alkylacetyl-G) via a putative de novo pathway involving a dithiothreitol-insensitive cholinephosphotransferase. However, the relevance of the de novo pathway in the biosynthesis of PAF depends on the existence of enzymes that can directly synthesize alkylacetyl-G from 1-alkyl-2-lyso-sn-glycero-3-P (alkyllyso-GP) or some other source. In this study, we demonstrated that microsomal preparations of rat spleen can synthesize alkylacetyl-GP by an alkyllyso-GP:acetyl-CoA acetyltransferase and that this intermediate is subsequently dephosphorylated by an alkylacetyl-GP phosphohydrolase to generate alkylacetyl-G. The properties of alkyllyso-GP:acetyl-CoA acetyltransferase were characterized under conditions where the contaminating activity of alkylacetyl-GP phosphohydrolase was minimal; this was accomplished by inhibiting the phosphohydrolase with the addition of sodium vanadate and sodium fluoride to the assay mixtures and incubating at relatively low temperatures (23 degrees C). Alkyllyso-GP:acetyl-CoA acetyltransferase had a pH optimum of 8.4 at 23 degrees C and was located in the microsomal fraction. The apparent Km for acetyl-CoA under these conditions was 226 microM and the optimal concentration of alkyllyso-GP ranged between 16 and 25 microM. Based on pH optima, substrate inhibition studies, and sensitivities to preincubation temperatures of the microsomes, it appears that alkyllyso-GP:acetyl-CoA acetyltransferase differs from the acetyltransferase responsible for the transfer of acetate from acetyl-CoA to alkyllyso-GPC to form PAF. A variety of tissues had high activities of alkyllyso-GP:acetyl-CoA acetyltransferase, which indicates that this pathway is operational in many cell types. Our results document the existence of a complete de novo biosynthetic pathway for the assembly of PAF, and this route could be responsible for maintaining physiological levels of platelet activating factor for normal cell function.  相似文献   

10.
Human umbilical vein endothelial cells (HUVEC) produce platelet-activating factor (PAF) by a remodeling pathway involving a phospholipase A2 followed by an acetyl-CoA-dependent acetyltransferase which acetylates a lyso-PAF intermediate to form PAF and is stimulated by a variety of agents that generate inflammatory and allergic responses. A second route for PAF synthesis in mammalian tissues is a de novo pathway, which requires the participation of three enzymes: 1-alkyl-2-lyso-sn-glycero-3-phosphate (alkyllyso-GP): acetyl-CoA acetyltransferase, 1-alkyl-2-acetyl-sn-glycero-3-phosphate phosphohydrolase, and dithiothreitol (DDT)-insensitive 1-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G):CDP-cholinecholinephosphotransferase. In the present study we show that protein kinase C activation by phorbol 12-myristate 13-acetate (PMA) induces PAF production in HUVEC by an increase of both alkyllyso-GP:acetyl-CoA acetyltransferase and DTT-insensitive alkylacetyl-G:CDP-choline choline-phosphotransferase. PAF synthesis, labeled precursors [( 3H]acetate and [methyl-3H]choline) incorporation, and both enzyme activities of the de novo pathway increase concomitantly in response to different doses of PMA. PMA does not activate the enzymes of the remodeling pathway. We conclude that both remodeling and the de novo pathway for PAF synthesis are present in HUVEC and might be alternatively activated depending on the conditions of cell stimulation.  相似文献   

11.
The synthesis of platelet-activating factor (PAF) by -stimulated RBL-2H3 cells was significantly suppressed by overexpression of phospholipid hydroperoxide glutathione peroxidase (PHGPx). When the cells overexpressing PHGPx (L9 cells) were pretreated with diethyl maleate, which reduces PHGPx activity, PAF synthesis upon stimulation rose to levels seen in mock-transfected cells (S1 cells). Hydroperoxide levels, which are reduced in L9 cells, are involved in regulating PAF synthesis, because the addition of hydroperoxyeicosatetraenoic acid increased PAF production in -stimulated L9 cells to control cell levels. The activity of acetyl-CoA:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase, which is involved in the last step of PAF synthesis, is also reduced in L9 cells. p38 kinase inhibitors block acetyltransferase activity in normal -stimulated cells, suggesting that p38 kinase is involved in regulating acetyltransferase activity. Recombinant active p38 kinase activates acetyltransferase, whereas alkaline phosphatase reverses this, suggesting p38 kinase directly phosphorylates acetyltransferase. p38 kinase phosphorylation is blocked in L9 cells, indicating that high hydroperoxide levels are needed for the activation of p38 kinase. Thus, intracellular hydroperoxide levels participate in regulating p38 kinase phosphorylation, which in turn controls the activation of acetyltransferase and thus the synthesis of PAF. These observations suggest that PHGPx is an important component of the mechanisms regulating inflammation.  相似文献   

12.
Treatment of Ehrlich ascites cells with 2 mM oleic acid causes a greater than 10-fold increase in the formation of platelet-activating factor (PAF; 1-[3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine) from the de novo precursor of PAF, 1-[3H]alkyl-2-acetyl-sn-glycerol. Under these conditions, CTP:phosphocholine cytidylyltransferase activity, which is known to catalyze the rate-limiting step in phosphatidylcholine biosynthesis, was stimulated 32% (p less than 0.001) over control cells. Surprisingly, the dithiothreitol-insensitive choline-phosphotransferase activity, which catalyzes the final step in PAF biosynthesis, was reduced approximately 95% in membranes isolated from cells that were pre-treated with 2 mM oleic acid. However, calculations of product formation at this reduced cholinephosphotransferase activity revealed that it was still sufficient to accommodate the increased synthesis of PAF observed in the intact oleic acid-treated cells. Kinetic studies and experiments done with cells treated with phenylmethylsulfonyl fluoride (an acetylhydrolase inhibitor) indicate the various metabolic products formed are derived through the following sequence of reactions: 1-alkyl-2-acetyl-sn-glycerol----1-alkyl-2-acetyl-sn-glycero-3- phosphocholine----1-alkyl-2-lyso-sn-glycero-3-phosphocholine----1-alkyl- 2(long-chain) acyl-sn-glycero-3-phosphocholine. These results indicate PAF is the source of alkylacylglycerophosphocholine through the action of an acetylhydrolase and a transacylase as shown in other cell systems. The relative amounts of PAF, lyso-PAF, and alkylacylglycerophosphocholine produced after treatment of the cells with oleic acid in the absence of the phenylmethylsulfonyl fluoride inhibitor indicate that the acylation rate for lyso-PAF is considerably slower (i.e. rate-limiting) than the deacetylation of PAF by acetylhydrolase. We further conclude that the final step in the de novo pathway for PAF biosynthesis is under the direct control of CTP:phosphocholine cytidylyltransferase, which emphasizes the importance of this regulatory (rate-limiting) step in the biosynthesis of both phosphatidylcholine and PAF.  相似文献   

13.
Intact alveolar macrophages were found to acylate alkyl- and acyllysophospholipids with a high selectivity for arachidonate. A specific mechanism appears responsible for the incorporation of arachidonate into lysophospholipids in intact cells since the kinetic pattern for the formation of the 20:4 species was different from all other species. This specificity was investigated in more detail by examining the enzymatic acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine by macrophage membranes; in the absence of CoA, ATP, and Mg2+, this lysophospholipid was acylated with a high preference for arachidonate that was independent of added free fatty acids. The addition of CoA alone increased the rate of acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine, mainly due to an increase in the formation of species other than those containing arachidonate. When CoA, ATP, and Mg2+ were present, the macrophage membranes catalyzed the acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine without preference for arachidonate. A different apparent Km and Vmax was observed for reactions involving each cofactor condition. We conclude that the acylation of alkyl- and acyllysophospholipids by rabbit alveolar macrophages occurs by three separate mechanisms: a CoA-independent transacylation, a CoA-dependent transacylation (reverse reaction catalyzed by acyl-CoA acyltransferase), and an acyl-CoA-dependent acylation. The CoA-independent transacylation reaction is unique in that it is specific for arachidonate and accounts for the selective acylation of alkyl- and acyllysophospholipids by arachidonate in membrane preparations of alveolar macrophages. This reaction appears to be extremely important in the remodeling of phospholipid molecular species and the mobilization of arachidonate into ether-linked lipids. The transfer of arachidonate to 1-alkyl-2-lyso-sn-glycero-3-phosphocholine also is of importance in the final inactivation step for platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine), whereby 1-alkyl-2-arachidonoyl-sn-glycerol-3-phosphocholine (a stored precursor of both platelet activating factor and arachidonic acid metabolites) is formed.  相似文献   

14.
We have previously reported that platelet-activating factor (PAF) is present in human amniotic fluid obtained from women in labor. We have also demonstrated that PAF, lyso-PAF, and alkyl acyl-sn-glycero-3-phosphocholine (AA-GPC) are present in human amnion tissue. In the reported study, we have investigated the enzymes involved in PAF metabolism in amnion tissue and their regulation. A phospholipase A2 activity has been demonstrated in amnion tissue which cleaves alkyl acyl (long-chain) sn-glycero-3-phosphocholine. The enzyme activity is not altered by Ca2+ and is distinctly different from the phospholipase A2 that we have previously characterized in this tissue. Amnion tissue contains acetyltransferase activity which requires Ca2+ and is associated with the microsomal fraction. Acetylhydrolase is also present in the cytosolic fraction of amnion tissue. Acetylhydrolase activity has also been demonstrated in amniotic fluid. The affinities of acetyltransferase (for lyso-PAF) and acetylhydrolase (for PAF) were unaffected by Ca2+. In the presence of Ca2+, however, the specific activity of acetyltransferase was increased four- to fivefold while that of acetylhydrolase was unaffected. Acetyltransferase and acetylhydrolase activities in fetal membranes and decidua were similar and were unchanged with gestational age. The possible role of PAF in the initiation of human parturition is discussed.  相似文献   

15.
The metabolism of platelet activating factor (1-[1,2-3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine) and 1-[1,2-3H]alkyl-2-acetyl-sn-glycerol was studied in cultures of human umbilical vein endothelial cells. Human endothelial cells deacetylated 1-[1,2-3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine to the corresponding lyso compound (1-[1,2-3H]alkyl-2-lyso-sn-glycerol-3-phosphocholine) and a portion was converted to 1-[1,2-3H]alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholine. Lyso platelet activating factor (lyso-PAF) (1-[1,2-3H]alkyl-2-lyso-sn-glycero-3-phosphocholine) was detected in the media very early during the incubation and the amount remained higher than the level of the lyso product observed in the cells. Cellular levels of 1-[1,2-3H]alkyl-2-lyso-sn-glycero-3-phosphocholine were significantly higher than the acylated product (1-[1,2-3H]alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholine) at all times during the 60-min incubation period, which suggests that the ratio of acetylhydrolase to acyltransferase activities is greater in endothelial cells than in most other cells. When endothelial cells were incubated with 1-[1,2-3H]alkyl-2-acetyl-sn-glycerol, a known precursor of PAF, 1-[1,2-3H]alkyl-sn-glycerol was the major metabolite formed (greater than 95% of the 3H-labeled metabolites during 20- and 40-min incubations). At least a portion of the acetate was removed from 1-[1,2-3H]alkyl-2-acetyl-sn-glycerol by a hydrolytic factor released from the endothelial cells into the medium during the incubations. Only negligible amounts of the total cellular radioactivity (0.2%) was incorporated into platelet activating factor (1-[1,2-3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine); therefore, it is unlikely that the previously observed hypotensive activity of 1-alkyl-2-acetyl-sn-glycerols can be explained on the basis of the conversion to platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by endothelial cells. Results of this investigation indicate that endothelial cells play an important role in PAF catabolism. Undoubtedly, the endothelium is important in the regulation of PAF levels in the vascular system.  相似文献   

16.
Specific binding sites for platelet activating factor in human lung tissues   总被引:7,自引:0,他引:7  
Specific and saturable binding of [3H]-labeled 1-0-alkyl-2-0-acetyl-sn-glycero-3-phosphocholine (PAF) to membrane preparations of human lung tissues is demonstrated. The equilibrium dissociation constant (KD) was determined by Scatchard analysis to be 4.9 (+/- 1.7) X 10(-10)M and the maximal number of binding sites was estimated to be 140 (+/- 37) fmole/mg protein. The binding site is PAF specific and its selectivity toward PAF analogs is very similar to that in rabbit platelets. Two PAF receptor antagonists, kadsurenone and ginkgolide B, previously characterized in platelet systems, also displace the binding of [3H]-PAF to human lung homogenates. These data indicate that human lung tissues contain PAF specific receptors, and binding of PAF to these receptor sites may be the first step to initiate PAF-induced lung pathophysiology.  相似文献   

17.
Two platelet-activating factor (PAF) analogs containing a methyl group at C2 of the glycerol moiety were synthesized, and some of their biochemical properties were investigated. 1-O-Hexadecyl-2-C,O-dimethyl-rac-glycero-3-phosphocholine (2-methyl-2-methoxy PAF) was prepared in a synthetic scheme beginning with the etherification of 2-methylpropen-1-ol. A reaction sequence involving hydroxylation, tritylation, alkylation, and detritylation afforded 1-O-hexadecyl-2-C,O-dimethyl-rac-glycerol, which was converted into the phosphocholine. A 2-lyso derivative of this PAF analog (2-methyl-lyso PAF) was synthesized from 1-O-hexadecyl-2-C-methyl-3-O-trityl-rac-glycerol. Benzylation followed by detritylation gave 1-O-hexadecyl-2-C-methyl-2-O-benzyl-rac-glycerol, which was converted into the phosphocholine compound. Hydrogenolysis afforded 1-O-hexadecyl-2-C-methyl-rac-glycero-3-phospholine (2-methyl-lyso PAF). The 2-methyl-lyso PAF analog served as a substrate for the acetyl-CoA-dependent acetyltransferase that acetylates 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine. However, 2-methyl-lyso PAF did not have a significant effect on the activities of a CoA-independent transacylase or of the acetylhydrolase that inactivates PAF, and thus does not appear to be a substrate or an inhibitor, respectively, for these enzymes. In addition, this analog exhibited only one-half of the antitumor activity of rac-1-O-alkyl-2-methoxy-rac-glycero-3-phosphocholine in human leukemic (HL-60) cells, and elicited no hypotensive response in rats and no platelet-activating activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
LPS has a priming effect on various stimuli. For instance, LPS priming enhances the production of platelet-activating factor (PAF), a proinflammatory lipid mediator that is induced by PAF itself. Among various enzymes responsible for PAF biosynthesis, acetyl-coenzyme A:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase is one of the enzymes activated by PAF receptor stimulation. In this study we investigated the priming effect of LPS on the acetyltransferase activation by PAF in TLR4-knockout (KO) mice, MyD88-KO mice, and Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF)-KO mice. This enzyme was biphasically activated by LPS. Although the first peak occurred within 30 min in wild-type (WT), but not TLR4-KO or MyD88-KO, macrophages, the second phase reached a maximum within hours in WT, MyD88-KO, and TRIF-KO, but not in TLR4-KO, macrophages. Only in the second phase was the increase in acetyltransferase activity upon PAF receptor activation remarkably enhanced in WT, MyD88-KO, and TRIF-KO cells, but not in TLR4-KO cells. These data demonstrated that LPS exerted a priming effect on PAF receptor-mediated acetyltransferase activation through the TLR4-dependent, but MyD88- and TRIF-independent, pathway.  相似文献   

19.
1-Alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase plays an important regulatory role in the biosynthesis of platelet activating factor, a potent bioactive mediator. We tested the hypothesis that the activity of acetyltransferase may be modulated by enzymatic phosphorylation and dephosphorylation. The results showed that acetyltransferase activity in rat spleens was 2- to 3-fold higher in microsomes isolated in the presence of F-than in those isolated in the presence of Cl-. The microsomal acetyltransferase could be activated by preincubation of microsomes, isolated in the presence of Cl-, with ATP, Mg2+, and the soluble fraction from rat spleen. Addition of phosphatidylserine, diacylglycerols, plus Ca2+ further enhanced the activity. The increase in the activity of acetyltransferase was abolished by treatment of the activated microsomes with alkaline phosphatase. Conversely, the activity of acetyltransferase can be reactivated in the alkaline phosphatase-treated microsomes with incubation conditions that favor phosphorylation. Therefore, our findings suggest that acetyltransferase activity is regulated by reversible activation/inactivation through phosphorylation/dephosphorylation.  相似文献   

20.
Platelet-activating factor in normal rat uterus   总被引:4,自引:0,他引:4  
Platelet-activating factor (PAF) was found in normal rat uterus and identified as 1-0-hexadecyl/octadecenyl-2-acetyl-sn-glycero-3-phosphocholine. PAF was purified by several successive chromatographic procedures. It showed platelet aggregating activity, which was inhibited by CV 3988, and had no effect on platelets desensitized with 1-0-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine. The tert-butyldimethyl-silylderivative of 1-0-alkyl-2-acetyl-sn-glycerol, which was obtained by hydrolysis of uterine PAF with phospholipase C, was analyzed by gas chromatography-mass spectrometry. One rat uterus contained approximately 21.3 ng of 1-0-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine. This is the first report of the occurrence of a significant amount of PAF in a normal animal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号