首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charybdotoxin (ChTX), a peptidyl inhibitor of the high conductance Ca2+-activated K+ channel (PK,Ca), has been radiolabeled to high specific activity with 125I, and resulting derivatives have been well separated. The monoiodotyrosine adduct blocks PK,Ca in vascular smooth muscle with slightly reduced potency compared with the native peptide under defined experimental conditions. [125I]ChTX, representing this derivative, binds specifically and reversibly to a single class of sites in sarcolemmal membrane vesicles prepared from bovine aortic smooth muscle. These sites display a Kd of 100 pM for the iodinated toxin, as determined by either equilibrium or kinetic binding analyses. Binding site density is about 500 fmol/mg of protein in isolated membranes. The addition of low digitonin concentrations to disrupt the vesicle permeability barrier increases the maximum receptor concentration to 1.5 pmol/mg of protein, correlating with the observations that ChTX binds only at the external pore of PK,Ca and that the membrane preparation is of mixed polarity. Competition studies with ChTX yield a Ki of about 20 pM for native toxin. Binding of [125I]ChTX is modulated by ionic strength as well as by metal ions that are known to interact with PK,Ca. Moreover, tetraethylammonium ion, which blocks PK,Ca with moderately high affinity when applied at the external membrane surface, inhibits [125I]ChTX binding in an apparently competitive fashion with a Ki similar to that found for channel inhibition. In marked contrast, agents that do not inhibit PK,Ca in smooth muscle (e.g. tetrabutylammonium ion, other toxins homologous with ChTX, and pharmacological agents that modulate the activity of dissimilar ion channels) have no effect on [125I]ChTX binding in this tissue. Taken together, these results suggest that the binding sites for ChTX which are present in vascular smooth muscle are directly associated with PK,Ca, thus identifying [125I]ChTX as a useful probe for elucidating the biochemical properties of these channels.  相似文献   

2.
Charybdotoxin (ChTX), a potent peptidyl inhibitor of several types of K+ channels, binds to sites in vascular smooth muscle sarcolemma (Vázquez, J., Feigenbaum, P., Katz, G. M., King, V. F., Reuben, J. P., Roy-Contancin, L., Slaughter, R. S., Kaczorowski, G. J., and Garcia, M. L. (1989) J. Biol. Chem. 265, 20902-20909) which are functionally associated with a high conductance Ca2(+)-activated K+ channel (PK,Ca). 125I-ChTX also binds specifically and reversibly to a single class of sites in plasma membranes prepared from rat brain synaptosomes. These sites exhibit a Kd of 25-30 pM, as measured by either equilibrium or kinetic binding protocols and display a maximum density of about 0.3-0.5 pmol/mg of protein. Competition studies with native ChTX yield a Ki of 8 pM for the noniodinated toxin. The highest density of ChTX sites exists in vesicle fractions of plasma membrane origin. Binding of 125I-ChTX is modulated by metal ions that interact with K+ channels: Ba2+, Ca2+, and Cs+ cause inhibition of ChTX binding; Na+ and K+ stimulate binding at low concentration before producing complete inhibition as their concentration is increased. Stimulation of binding is due to an allosteric interaction that decreases Kd whereas inhibition results from an ionic strength effect. Tetraethylammonium ion has no effect on binding, but tetrabutylammonium ion blocks binding with a Ki of 2.5 mM. Different toxins (i.e. alpha-dendrotoxin, noxiustoxin) that inhibit an inactivating, voltage-dependent K+ channel (PK,V) block 125I-ChTX binding in brain. In marked contrast, iberiotoxin, a selective inhibitor of PK,Ca, has no effect on ChTX binding in this preparation. Inhibition of ChTX binding by alpha-dendrotoxin and noxiustoxin results from an allosteric interaction between separate binding sites for these agents and the ChTX receptor. Taken together, these results suggest that the ChTX sites present in brain are associated with PK,V rather than with PK,Ca. Therefore, 125I-ChTX is a useful probe for elucidating the biochemical properties of a number of different types of K+ channels.  相似文献   

3.
Palytoxin (about 1 pM) increases the permeability of human erythrocytes. We now report its radiolabeling with 125I, followed by affinity purification on porcine kidney membranes. The resulting ligand binds fast and reversibly to intact erythrocytes. The Kd from velocity and equilibrium measurements is 2 X 10(-11) M, and the number of binding sites about 200 per cell. Binding is promoted by divalent cations (Ca2+ greater than Sr2+ greater than Ba2+) and by borate. It is inhibited by K+ (IC50 2 mM), ouabain (IC50 3 X 10(-9) M) and ouabagenin (IC50 6 X 10(-6) M). Conversely, [3H]ouabain is displaced by the substances and concentrations mentioned, and also by palytoxin (Ki 3 X 10(-11) M). Dog erythrocytes, which are known to possess a very low (Na+ + K+)-ATPase activity, are resistant to and lack specific binding sites for palytoxin. Binding of 125I-palytoxin, like that of [3H]ouabain, depends on the state of (Na+ + K+)-ATPase. ATP depletion decreases binding of both ligands to erythrocytes. Binding of 125I-palytoxin and [3H]ouabain to red cell stroma is partially restored by ATP. In contrast to [3H]ouabain, binding of 125I-palytoxin to red cell stroma is not promoted by Mg2+ and Pi. The data show that (a) all known promoters and inhibitors of palytoxin action on human red cells do so by enhancing or decreasing its binding, (b) (Na+ + K+)-ATPase serves as a receptor for palytoxin, and (c) the antagonism by ouabain is competitive at the receptor level. They support our previous hypothesis that palytoxin increases human erythrocyte permeability by formation of pores through (Na+ + K+)-ATPase or its close vicinity.  相似文献   

4.
R R Schmidt  H Betz  H Rehm 《Biochemistry》1988,27(3):963-967
The presynaptically active snake venom neurotoxin beta-bungarotoxin (beta-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K+ channels. Here we show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of 125I-labeled beta-Butx to chick and rat brain membranes with apparent Ki values of 180 nM and 1100 nM, respectively. The mechanism of inhibition by MCD peptide is noncompetitive, as is inhibition of 125I-beta-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. Beta-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca2+ by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of 125I-beta-Butx by lowering its affinity to brain membranes.  相似文献   

5.
Inward rectifier potassium channels (Kir) play critical roles in cell physiology. Despite representing the simplest tetrameric potassium channel structures, the pharmacology of this channel family remains largely undeveloped. In this respect, tertiapin (TPN), a 21 amino acid peptide isolated from bee venom, has been reported to inhibit Kir1.1 and Kir3.1/3.4 channels with high affinity by binding to the M1-M2 linker region of these channels. The features of the peptide-channel interaction have been explored electrophysiologically, and these studies have identified ways by which to alter the composition of the peptide without affecting its biological activity. In the present study, the TPN derivative, TPN-Y1/K12/Q13, has been synthesized and radiolabeled to high specific activity with (125)I. TPN-Y1/K12/Q13 and mono-iodo-TPN-Y1/K12/Q13 ([(127)I]TPN-Y1/K12/Q13) inhibit with high affinity rat but not human Kir1.1 channels stably expressed in HEK293 cells. [(125)I]TPN-Y1/K12/Q13 binds in a saturable, time-dependent, and reversible manner to HEK293 cells expressing rat Kir1.1, as well as to membranes derived from these cells, and the pharmacology of the binding reaction is consistent with peptide binding to Kir1.1 channels. Studies using chimeric channels indicate that the differences in TPN sensitivity between rat and human Kir1.1 channels are due to the presence of two nonconserved residues within the M1-M2 linker region. When these results are taken together, they demonstrate that [(125)I]TPN-Y1/K12/Q13 represents the first high specific activity radioligand for studying rat Kir1.1 channels and suggest its utility for identifying other Kir channel modulators.  相似文献   

6.
The mast cell degranulating peptide (MCD) and dendrotoxin I (DTXI) are two toxins, one extracted from bee venom, the other one from snake venom, that are thought to act on voltage-sensitive K+ channels. Binding sites for the two toxins have been solubilized. The solubilized sites were stable and retained their high affinity for 125I-DTXI and 125I-MCD (Kd approximately equal to 100 pM). Interactions were found between MCD and DTXI binding sites in the solubilized state, establishing that the two different toxins act on the same protein complex. This conclusion was strengthened by the observations (i) that conditions of solubilization that eliminated 125I-MCD binding activity also eliminated 125I-DTX binding activity while both types of activities were preserved in the presence of K+ or Rb+ and (ii) that binding components for the two types of toxins had similar sedimentation coefficients and copurified in partial purifications. A component of the receptor protein for 125I-MCD has been identified; it has a Mr of 77,000 +/- 2000. This polypeptide was similar to or identical in molecular weight with that which serves as a receptor for DTXI (Mr 76,000 +/- 2000).  相似文献   

7.
Chronic treatment of PC 12 cells with the 1,4-dihydropyridine Ca2+ channel antagonist nifedipine [5 x 10-8M/5 days] and the activator S Bay K 8644 [5 x 10-7 M/5 days] resulted in up- and down-regulation of 1,4-dihydropyridine binding site density by 29 and 24%, respectively, without change in affinity. These changes in binding site density represent functional changes as indicated by the corresponding changes in K+ depolarization-induced 45Ca2+ uptake and in whole cell currents carried by Ba2+ ions. This homologous regulation of voltage-dependent Ca2+ channels [VDCC] by potent and specific ligands parallels that observed for other classes of membrane receptors.  相似文献   

8.
Molecular identification of the binding sites for pituitary adenylate cyclase activating polypeptide (PACAP) and the effect of vasoactive intestinal peptide (VIP) on the specific binding sites for PACAP in rat cultured astrocyte membrane preparations were investigated. Affinity cross-linking of astrocyte membrane preparations with [125I]PACAP27 showed the presence of a 60 kDa radiolabeled ligand-receptor complex. The labeling of this band was completely abolished in the presence of 10(-8) M or higher concentrations of unlabeled PACAP27. The molecular weight of this binding protein was estimated to be 57 kDa assuming an equimolar interaction of ligand and receptor in the 60 kDa complex. The labeling of [125I]PACAP27 binding to this binding protein was partly reduced by the addition of 10(-6) M VIP, but not by 10(-8) M. In the binding assay, VIP displaced the specific binding of [125I]PACAP27 at 10(-7) M or a greater concentration. Displacement of [125I]PACAP27 binding by unlabeled PACAP27 was analyzed in the presence or absence of 10(-6) M VIP. VIP at 10(-6) M reduced the maximal binding capacity (Bmax) of the high affinity binding site for PACAP27 by about 50% but did not alter the Bmax of the low affinity binding site. The dissociation constants (Kd) for both the high and low affinity binding sites were unaltered. These results indicate that PACAP binds to a 57 kDa membrane protein with high affinity and that VIP, at much higher concentrations, binds to this same binding site, suggesting that VIP mimics the biological action of PACAP in astrocytes at high concentrations.  相似文献   

9.
SCH-23390 is a high-affinity antagonist selective for D1 dopamine receptors (Ki = 2.5 nM). It does not contain a functional group that can be conveniently coupled to commercially available resins for affinity chromatography or to prepare photolabels for photoaffinity labeling of receptors. To construct an affinity resin for purification of dopamine D1 receptors, an aldehyde analogue of SCH-23390, (+/-)-7-chloro-8-hydroxy-1-(4'-formylphenyl)-3-methyl-2,3,4,5-tetrahydro -1H- 3-benzazepine (ASCH), was synthesized. 8-Methoxy-1-(4'-bromophenyl)-SCH-23390 was lithiated, formylated, and O-demethylated to form the aldehyde. NMR and IR analyses were performed to characterize the product. Assays were performed with the radioligand [125I]SCH-23982 to define the biological activity of the aldehyde. ASCH displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 7.1 nM. ASCH has been coupled through the aldehyde group on the phenyl ring to diaminodipropylamine-agarose for affinity chromatography. After solubilization of caudate membranes in 1% digitonin, the affinity resin retained binding sites for [125I]SCH-23982 that were eluted with 10 mM SCH-23390. The aldehyde was also covalently coupled to biotin hydrazide for fluorescence labeling of dopamine D1 receptors. The biotin-conjugated aldehyde of SCH-23390 displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 9.3 nM.  相似文献   

10.
7,8-Dihydrobatrachotoxinin (A) (I) was synthesized from 11 alpha-hydroxyprogesterone (III) by a 37-stage procedure. Trimethylpyrrolcarboxylate, benzoate as well as 2-azido-benzoate derivatives of (I) were obtained by mixed anhydride technique, the latter two derivatives being prepared also with tritium atoms in aromatic rings (sp. radioactivity about 28 Cu/mmol). Upon interaction with rat brain synaptosomes the apparent Kd of 7,8-dihydrobatrachotoxinin A 20 alpha-[4-3H]benzoate (Iv) was about 2,5 x 10(-6) M. The (Iv) specific binding was inhibited by aconitine with K0,5 = 1,3 x 10(4) M. Anemonia sulcata toxin II (ATX II) enhanced (Iv) affinity for the receptor up to 7 x 10(-7) M, the maximum binding capacity being 2,5 pmol/mg of protein. Benzocaine and tetracaine competitively displaced specifically bound toxin with K0,5 = 3,1 x 10(-4) M and 5,7 x 10(-7) M, respectively, in the presence of 10(-5) M ATX II. 2-Azido[5-3H]benzoate derivative (Id) was shown to be an effective probe for covalent labeling of the alkaloid toxin receptor of the sodium channel.  相似文献   

11.
K+-stimulated 45Ca2+ uptake into rat brain and guinea pig cerebral cortex synaptosomes was measured at 10 s and 90 s at K+ concentrations of 5-75 mM. Net increases in 45Ca2+ uptake were observed in rat and guinea pig brain synaptosomes. 45Ca2+ uptake under resting or depolarizing conditions was not increased by the 1,4-dihydropyridine BAY K 8644, which has been shown to activate Ca2+ channels in smooth and cardiac muscle. High-affinity [3H]nitrendipine binding in guinea pig synaptosomes (KD = 1.2 X 10(-10) M, Bmax = 0.56 pmol mg-1 protein) was competitively displaced with high affinity (IC50 2.3 X 10(-9) M) by BAY K 8644. Thus high-affinity Ca2+ channel antagonist and activator binding sites exist in synaptosome preparations, but their relationship to functional Ca2+ channels is not clear.  相似文献   

12.
Charybdotoxin, a short scorpion venom neurotoxin, which was thought to be specific for the blockade of Ca2+-activated K+ channels also blocks a class of voltage-sensitive K+ channels that are known to be the target of other peptide neurotoxins from snake and bee venoms such as dendrotoxin and MCD peptide. Charybdotoxin also inhibits 125-dendrotoxin and 125I-MCD peptide binding to their receptors. All these effects are observed with an IC50 of about 30 nM.  相似文献   

13.
[125I]17alpha-hydroxy-20alpha-yohimban-16beta-(N-4-p6 hydroxyphenethyl)carboxamide or [125I]rauwolscine-OHPC, a new radioiodinated probe derived from rauwolscine was synthesized and its binding characteristics investigated on sections of the mouse caudate putamen. [125I]rauwolscine-OHPC binding was saturable and revealed interaction with a single class of binding sites (KD= 0.171 nM, Bmax = 3082 pCi/mg of tissue). The kinetically derived affinity was in close agreement with the affinity evaluated by saturation experiments: k(-1)/k(+1)(0.0403 min(-1)/114 10(6) M(-1) min(-1))=0.35 nM. Competition studies revealed interaction with one single class of binding sites for each of the twelve compounds tested. The rank of potency suggested an interaction with alpha2 adrenoceptors (atipamezole > or = RX 821002 > yohimbine > (-)epinephrine). Moreover, the good affinity of [125I] rauwolscine-OHPC binding sites for spiroxatrine, yohimbine, WB 4101, the relatively good affinity for prazosin (Ki =37.4 nM) and the affinity ratio prazosin/oxymetazoline (37.4/43.4=0.86) were consistent with an alpha2C selective labelling of [125I]rauwolscine-OHPC. The distribution of [125I]rauwolscine-OHPC binding sites in mouse brain was characterized by autoradiography. The density of binding sites was high in the islands of Calleja, accumbens nucleus, caudate putamen and olfactory tubercles, moderate in the hippocampus, amygdala and anterodorsal nucleus of the thalamus. These findings demonstrated that [125I]rauwolscine-OHPC is a useful radioiodinated probe to label alpha2C adrenoceptors in mouse brain.  相似文献   

14.
Binding studies have shown that [125I]NKA is a selective ligand of tachykinin septide-sensitive binding sites from membranes of the rat submaxillary gland. Indeed, this ligand bound with high affinity to a single population of sites. In addition, competition studies indicated that natural tachykinins and tachykinin-related compounds had a similar affinity for these sites than for those labeled with [3H]ALIE-124, a selective ligand of septide-sensitive binding sites. Moreover, selective tachykinin NK2, or NK3 agonists or antagonists exhibited weak or no affinity for [125I]NKA binding sites. As indicated by Ki values of several compounds, the pharmacological characteristics of the septide-sensitive binding sites (labeled with [125I]NKA) largely differ from those of classic NK1 binding sites, as determined on crude synaptosomes from the rat brain using [125I]Bolton-Hunter substance P (SP) as ligand. Indeed, several tachykinins including neurokinin A (NKA), neuropeptide K (NPK), neuropeptide gamma (NKgamma), and neurokinin B, as well as some SP and NKA analogues or C-terminal fragments such as septide, ALIE-124, SP(6-11), NKA(4-10), which have a weak affinity for classic tachykinin NK1 binding sites exhibited a high affinity for the septide-sensitive binding sites. In contrast, SP, classic selective NK1 agonists, and antagonists had a high affinity for both types of binding sites. The presence of a large population of tachykinin septide-sensitive binding sites in the rat submaxillary gland may thus explain why NPK and NPgamma induce salivary secretion and may potentiate the SP-evoked response in spite of the absence of tachykinin NK2 receptors in this tissue.  相似文献   

15.
The high and low affinity binding sites for PACAP were identified in rat astrocytes using [125I]PACAP27 as the labeled ligand. Scatchard analysis of displacement of the bound tracer by unlabeled PACAP27 indicated the existence of two classes of binding sites, with the dissociation constant (Kd) = 1.22 +/- 0.4 nM, the binding maximal capacity (Bmax) = 821 +/- 218 fmols/mg protein for the high affinity binding site, and Kd = 0.59 +/- 0.06 microM, Bmax = 563 +/- 12 pmols/mg protein for the low affinity binding site, respectively. The specificity of [125I]PACAP27 binding was tested using PACAP38 and peptides structurally related to PACAP, such as VIP, GHRF, PHI, secretin and glucagon. PACAP38 completely displaced the binding of [125I]PACAP27 and Scatchard analysis also indicated the presence of two classes of binding sites with similar Kd and Bmax to those for PACAP27. VIP and GHRF competed with [125I]PACAP27, but to a much lesser extent than unlabeled PACAP27 in binding. Other peptides tested did not displace the binding of [125I]PACAP27 at 10(-6) M.  相似文献   

16.
Charybdotoxin (ChTX), a 4.3 kDa polypeptide toxin from the venom of the scorpion Leiurus quinquestriatus, blocks both a Ca-activated K channel (IC50 ≈ 15 nM) and a Ca-independent voltage-gated K channel (IC50 ≈ 40 nM) in rat brain synaptosomes. These results indicate that in this preparation ChTX is not specific for the Ca-activated K channel and suggest that there may be structural homology among the toxin-binding sites on various types of K channels.  相似文献   

17.
α-Bungarotoxin Binds to Low-Affinity Nicotine Binding Sites in Rat Brain   总被引:5,自引:4,他引:1  
Reported differences in the pharmacology and distribution of [3H]nicotine and [125I]alpha-bungarotoxin binding sites in mammalian brain suggest that these ligands label separate receptor sites. Affinity purification of an alpha-bungarotoxin binding protein from rat brain failed to copurify the high-affinity nicotine binding site, which remained in the nonbound soluble fraction after the affinity chromatography step. This confirms the independence of these putative receptor sites. Nevertheless, the binding of [125I]alpha-bungarotoxin to P2 membranes was inhibited by (-)-nicotine (Ki = 9 X 10(-6) M), and this sensitivity was preserved after affinity purification. It is proposed that alpha-bungarotoxin binds to a population of low-affinity nicotine binding sites. Comparison of the enantiomers of nicotine in competition studies at both radioligand binding sites revealed an 80-fold preference for the (-) form at the high-affinity [3H]nicotine binding site, whereas the site labelled by [125I]alpha-bungarotoxin displayed little stereoselectivity. In this respect, the brain alpha-bungarotoxin binding site resembles the nicotinic acetylcholine receptor from Torpedo electric organ.  相似文献   

18.
Receptor-mediated incorporations of two modified low density lipoproteins (LDL), acetylated LDL (acetyl-LDL) and oxidized LDL were compared in vitro in mouse peritoneal macrophages by cross-competition experiments. Excess amount of oxidized LDL inhibits the binding of [125I]acetyl-LDL only partially, and excess amount of acetyl-LDL inhibits that of [125I]oxidized LDL also only partially, suggesting that the uptake of the two LDL by macrophages is mediated by partially overlapped yet different mechanisms. Scatchard analysis of [125I]acetyl-LDL binding showed a linear plot and addition of excess amount of oxidized LDL partially displaced the binding sites without changing the affinity, suggesting that there are two classes of receptors with similar affinity; one is specific for acetyl-LDL and the other is common. And the plot of [125I]oxidized LDL binding showed a curvilinear plot and excess amount of acetyl-LDL partially displaced the binding sites of the low affinity, suggesting that there are two classes of binding sites with different affinities and the low affinity one is shared with acetyl-LDL. These results indicate that macrophage receptors for modified LDL consist of at least three receptors, two of which are specific for each LDL and the rest is a common receptor.  相似文献   

19.
Binding of human beta-endorphin (beta h-EP) to bovine adrenal medullary membranes was characterized using [125I]Tyr27-beta h-EP [( 125I]beta h-EP) as a primary ligand. The specific binding of [125I]beta h-EP was time-dependent, saturable and stereospecific. Analysis of a saturation isotherm revealed two apparent classes of specific binding sites with dissociation constants of 2.4 and 34 nM. The extent of maximum inhibition of specific [125I]beta h-EP binding by either levorphanol, morphine, naloxone, dynorphin A (1-13) or D-Ala2-D-Leu5-enkephalin was similar to each other and remained partial (60-70%). Levorphanol eliminated the high affinity component but showed no effect on the low affinity component of [125I]beta h-EP binding. beta h-EP(1-31) displaced completely the [125I]beta h-EP binding. However, beta h-EP(1-23) only partially (approximately 80%) inhibited the [125I]beta h-EP binding. beta h-EP(6-31) showed inhibitory activity on [125I]beta h-EP binding. These results suggest that [125I]beta h-EP binding to bovine adrenal medullary membranes consists of a high affinity opioid-sensitive component and a low affinity non-opioid component. The non-opioid component of [125I]beta h-EP binding may be related to COOH-terminal of the beta h-EP molecule.  相似文献   

20.
omega-Phonetoxin IIA (omegaPtxIIA), a peptide from spider venom (Phoneutria nigriventer), inhibits high threshold voltage-dependent calcium currents in neurons. To define its pharmacological specificity, we have used patch-clamp methods in cell lines expressing recombinant Ca(v)2.1, Ca(v)2.2, and Ca(v)2.3 channels (P/Q-, N-, and R-type currents, respectively). Calcium currents generated by Ca(v)2.1 and Ca(v)2.2 were blocked almost irreversibly by 3 nm omegaPtxIIA, whereas Ca(v)2.3 showed partial and readily reversible inhibition. Binding assays with mono[(125)I]iodo-omegaPtxIIA indicated that membranes expressing recombinant Ca(v)2.1 or Ca(v)2.2 channels showed a single class of sites with similar affinity (K(D) approximately 50 pm), whereas low affinity interactions were detectable with Ca(v)2.3. Kinetic, saturation, and displacement assays demonstrated that rat brain synaptosomes displayed multiple classes of binding sites for (125)I-omegaPtxIIA. High affinity binding of (125)I-omegaPtxIIA was totally displaced by omegaPtxIIA (K(i) = 100 pm), but only partially by omega-conotoxin GVIA (25% inhibition) and omega-conotoxin MVIIC (50% inhibition at 0.3 microm). (125)I-omegaPtxIIA thus defines a unique high affinity binding site that is predominantly associated with Ca(v)2.1 or Ca(v)2.2 channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号