首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
配体与膜受体结合可启动细胞信息传递通路,激活细胞并产生生物学效应。应用共聚焦激光扫描显微术,流式细胞分光光度计,生物活性测量等技术,研究MA与巨噬细胞膜受体结合后,膜下肌动蛋白丝构筑和含量随时间变化,以及细胞热能量改变。结果是ConA结合巨噬细胞膜受体后,膜下肌动蛋白多聚化加快,构筑成细胞内F-actin立体空间网络,F-actin含量增加具有时间相关性,细胞热能量增加。巨噬细胞内这些变化提示ConA通过膜受体诱导膜下肌动蛋白多聚化和构筑过程有信息传递和激活细胞等重要作用。  相似文献   

2.
本文首次提出用ABC(AvidinBiotinComplex)法标记细胞膜受体,通过FRAP(FluorescenceRecoveryAfterPhotobleaching)技术,测量细胞内吞过程中受体流动性变化的方法。实验选择巨噬细胞ConA受体,比较了用ConA-Biotin+Avidin-FITC(ABC法)和ConA-FITC(直接法)标记的膜表面ConA受体荧光强度和内吞过程中受体的流动性测量结果。结果显示ConA-Biotin+Avidin-FITC标记的巨噬细胞膜受体的平均荧光强度比用ConA-FITC标记的平均荧光强度高大约3倍;ABC法标记的受体,测量结果误差小、灵敏度高;ConA刺激15min后,巨噬细胞膜表面ConA受体的扩散系数和荧光恢复率较静息状态时明显下降。讨论了两种标记方法对测量结果的影响  相似文献   

3.
本文用FRAP(fluorescencerecoveryafterphotobleaching)技术,测量了静息状态和刀豆素A刺激不同时间后巨噬细胞膜磷脂、ConA受体扩散系数和荧光恢复率的变化。结果显示ConA刺激后膜磷脂和ConA受体的扩散系数和荧光恢复率均较静息状态的巨噬细胞明显降低,磷脂流动性的变化与ConA受体流动性的变化呈正相关。提示受体介导内吞导致的膜磷脂流动性的降低,可能是由于配体与细胞膜上受体结合形成配体-受体复合体,增加了受体的负荷,使受体的流动性降低,进而使膜磷脂的流动性降低。巨噬细胞内吞过程中膜磷脂和ConA受体流动性的降低,可能还与ConA刺激后巨噬细胞胞浆pH值有关。  相似文献   

4.
本文首次把ABC法应用于反体流动性测量中的膜表面体荧光标记,利用FRAP(Fluorescence Recovery After Photobleaching)技术实现了细胞内吞过程中膜受体流动变化的测量。实验用ConA-Biotin和Avidin-FITC(ABC法)标记巨噬细胞ConA受体,测量ConA刺激不同时间细胞膜表面受体的荧光强度、扩散系数和荧光恢复率的变化。结果显示ABC标记法适合于  相似文献   

5.
本文首次实现了细胞内吞过程中膜受体流动性的测量。实验选择巨噬细胞膜和伴刀豆凝集素A(ConA)。分别用ConA-Biotin+Avidin-FITC(ABC法)和ConA-FITC(直接法)两种方法标记巨哓细胞膜ConA受体,比较了这两咱方法标记的巨噬细胞ConA受体的荧光强度,利用FRAP技术。分别用两种标记方法测量了巨细胞ConA受体的流动性。结果显示ConA-Biotin+Avidin-FI  相似文献   

6.
FITC-dextran标记培养的小鼠腹腔巨噬细胞溶酶体,ConA-FITC标记细胞内吞。用激光扫描共聚焦显微镜测量伴刀豆球蛋白(ConA)、ATP引起的巨噬细胞溶酶体pH动态变化和ATP对细胞内吞ConA-FITC的影响。结果显示ConA引起巨噬细胞溶酶体pH迅速增加,6min左右达到峰值(pH5.7);ATP刺激30min后再加入ConA,溶酶体pH无明显变化(pH4.0);同时加入ATP和ConA,5min左右溶酶体pH降到最低点(pH4.1);ATP对巨噬细胞内吞ConA-FITC有明显的抑制作用。探讨了受体介导内吞与溶酶体pH的关系。  相似文献   

7.
为探讨肿瘤转移与细胞表面的糖结构的关系,对小鼠肝癌细胞的高、低淋巴道转移株Hca-F和Hca-P进行了蛋白质电泳及经蛋白质印迹术后的5种凝集素(ConA、WGA、UEA、SBA、PNA)结合糖蛋白谱的对比分析.结果表明:高、低转移两株细胞的SDS-PAGE谱基本相同;ConA特异结合糖蛋白共有5种(~72,80~90,~104,~150,~200kD);其中较明显的差异为~72kDConA特异结合糖蛋白,它在Hca-P细胞的表达明显高于Hca-F细胞.WGA特异结合糖蛋白1种(~150kD),在Hca-P细胞的表达略高于Hca-F细胞.此外,实验发现两种性质未明的蛋白质(~79,~130kD),后者在Hca-P细胞的含量明显高于Hca-P细胞.结果提示Hca-F和Hca-P细胞不同的转移表型可能与其糖蛋白的表达有一定的关联.  相似文献   

8.
本工作采用分离培养家兔肺内小动脉平滑肌细胞(PASMCs),观察了外源性血小板活化因子(plateletactivatingfactor,PAF)、BN52021(PAF受体拮抗剂)、吲哚美辛、维拉帕米对PASMCs产生血栓素A_2(TxA_2)、前列环素(PGI_2)及对细胞膜Ca~(2+)-ATPase活力的影响。结果表明:(1)基础状态下PASMCs存在花生四烯酸(AA)代谢。(2)外源性PAF通过受体后途径激活环加氧酶促进AA代谢致TXA_2及PGI-2增加,TXA_2/PGI_2比值无明显变化。(3)外源性PAF能直接抑制Ca~(2+)-ATPase活力。(4)维拉帕米可逆转PAF抑制PASMCs膜Ca~(2+)-ATPase活力的效应。  相似文献   

9.
用Aedans标记肌动蛋白单体G-Actin上Cys374残基作为探针,研究了稀土离子Ce~(3+)与G-Actin的结合及引起的微构象变化。Ce~(3+)在低浓度(Ce~(3+)/Actin摩尔比<1)和Ca~(2+)竞争G-Actin上二价离子的高亲合位点。Ce~(3+)取代Ca~(2+)引起Aedans荧光强度增强与Mg~(2+)取代Ca~(2+)的结果相同。Ce~(3+)/Actin>l则导致Aedans荧光强度下降。说明Ce~(3+)在高低两种浓度条件下结合的位点及对Cvs374的微构象的影响不同。时间分辩测得的Aedans荧光寿命也支持这一结论。CD谱结果表明Ce~(3+)/Actin<0.4,Actin的二级结构增加,大于0.4又导致其失去。Ce~(3+)-Actin在有/无游离ATP时用聚合液诱导的聚合结果表明,无游离ATP时,极低浓度Ce~(3+)促进聚合,高浓度虽有促进但有所减弱;有游离ATP时,Ce~(3+)/Actin在实验范围内促进聚合。  相似文献   

10.
目的:研究多巴胺对血管平滑肌细胞大电流、钙激活钾(BKca)通道的影响及其信息传递机制。方法用膜片钳细胞贴附式技术,记录细胞能液内灌流多巴胺受体激动剂、阻断剂以及第二信使及相关蛋白激酶拮机剂对猪冠状动脉血管平滑肌细胞BKca 爱道活动的影响。结果:多巴胺增加BKca通道活性(P〈0.01),并可被CA-1受体阻断剂SCH23390完全阻断,但不受β2受体阻断剂普藉洛尔的影响。腺苷酸环化酶抑制剂SO  相似文献   

11.
Numerous studies have described the F-actin cytoskeleton; however, little information relevant to C-actin is available. The actin pools of bovine aortic endothelial cells were examined using in situ and in vitro conditions and fluorescent probes for G-(deoxyribonuclease I.0.3 μM) or F-actin (phalloidin, 0.2 μM). Cells in situ displayed a diffuse G-actin distribution, while F-actin was concentrated in the cell periphery and in fine stress fibers that traversed some cells. Cells of subconfluent or just confluent cultures demonstrated intense fluorescence, with many F-actin stress fibers. Postconfluent cultures resembled the condition in situ; peripheral F-actin was prominent, traversing actin stress fibers were greatly reduced and fluorescent intensity was diminished. Postconfluency had little influence on G-actin. with only an enhancement in the intensity of G-actin punctate fluorescence. When post-confluent cultures were incubated with cytochalasin D (15 min; 10--4 M), F-actin networks were disrupted and actin punctate and diffuse fluorescence increased. G-actin fluorescence was not altered by the incubation. Although its unstructured nature may account for the minor changes observed, the stability of the G-actin pool in the presence of notable F-actin modulations suggested that filamentous actin was the key constituent involved in these actin cytoskeletal alterations. A separate finding illustrated that the concomitant use of actin probes with image enhancement and fluorescent microscopy could reveal simultaneously the G- and F-actin pools within the same cell.  相似文献   

12.
Distribution of microtubules and F-actin in aerobically growing cells of Dipodascus magnusii, belonging to the class Saccharomycetes was analyzed using immunofluorescence microscopy and labeling with rhodamine-tagged phalloidin. A conspicuous system of permanent cytoplasmic microtubules was observed in association with multiple nuclei. In elongating cells, helices of cytoplasmic microtubules appeared at the cell cortex. In cells approaching cytokinesis transversely oriented microtubules were revealed at incipient division sites. Confocal laser scanning microscopy showed a continuity of these transverse microtubules with the remaining microtubule network. The actin system of D. magnusii consisted of patches and filaments. Patches were found to accumulate at the tips of growing cells. Bands of fine actin filaments were usually observed before F-actin rings were established. A close cortical association of microtubules with the F-actin ring was documented on individual optical sections of labeled cells. Cells with developing septa showed medial F-actin discs associated at both sides with microtubules. Colocalization of cytoplasmic microtubules with actin filaments at the cortex of dividing cells supports a role of both cytoskeletal components in controlling cell wall growth and septum formation in D. magnusii.  相似文献   

13.
Formation of filamentous F-actin drives many cellular processes, including phagocytosis and cell spreading. We have recently reported that mouse macrophage 12/15-lipoxygenase (12/15-LO) activity promotes F-actin formation in filopodia during phagocytosis of apoptotic cells. Oxidized low-density lipoprotein (OxLDL) also stimulates robust F-actin formation and spreading of macrophages. However, unlike apoptotic cells, OxLDL did not cause specific translocation of 12/15-LO to the cell membrane, neither in macrophages nor in GFP-15LO-transfected COS-7 cells. Moreover, inhibition of 12/15-LO activity in macrophages by a specific inhibitor or by 12/15-LO gene disruption did not affect OxLDL-induced actin polymerization. Among LDL modifications modeling OxLDL, LDL modified by incubation with 15LO-overexpressing fibroblasts was as active in eliciting F-actin response as was OxLDL. This LDL modification is well known to produce minimally modified LDL (mmLDL), which is bioactive and carries lipid oxidation products similar to those produced by 12/15-LO catalysis. MmLDL activated phosphoinositide 3-kinase (PI3K), and PI3K inhibitors abolished mmLDL-induced macrophage spreading. We hypothesize that OxLDL and mmLDL may contribute oxidized lipids to the macrophage cell membrane and thereby mimic intracellular 12/15-LO activity, which leads to uncontrolled actin polymerization and dramatic cytoskeletal changes in macrophages.  相似文献   

14.
研究了醛糖还原酶抑制剂Tolrestat对高浓度葡萄糖(HG)所致肾小球系膜细胞(MC)肌动蛋白(actin)组装的影响。结果证明,与正常浓度葡萄糖(NG)相比,在HG培养的MC,F-actin失去束状外观呈不规则网状,显示F-actin部分去组装;F-actin荧光强度降低,G-actin荧光强度升高和F-/G-actin荧光强度比值下降。Tolrestat加入培养后,明显防止HG引起的F-actin去组装及F-和G-actin荧光强度的变化。提示多元醇通路激活在HG引起的MCactin去组装改变中起一定作用。  相似文献   

15.
Macrophage caldesmon is an actin bundling protein.   总被引:1,自引:0,他引:1  
M P Arias  M Pacaud 《Biochemistry》2001,40(43):12974-12982
A rapid purification procedure was developed for the isolation of caldesmon (CaD) from rabbit alveolar macrophage. The purified protein migrated with an apparent M(r) of 74,000 +/- 4000 on SDS-PAGE and cross-reacted with anti-gizzard CaD antibodies. A higher M(r) isoform was isolated from chicken gizzard. Their actin-binding parameters and effects on actomyosin-ATPase activity were investigated under identical experimental conditions. Electron microscope studies revealed that macrophage CaD was able to cross-link actin filaments into both networks and bundles. Compact F-actin bundles were predominantly or exclusively seen at cross-linker to actin molar ratios in the 1:20 to 1:10 range. Apparent K(a) at extrapolated saturation of the CaD-binding sites on F-actin was 1.2 x 10(6) M(-1) for macrophage CaD and 1.6 x 10(6) M(-1) for chicken gizzard CaD. CaD from either source was able to stimulate the actin-activated ATPase activity of macrophage myosin. Unexpectedly, chicken gizzard CaD also increased the ATPase activity of gizzard myosin. The degree of stimulation was approximately doubled in the presence of a large excess of Ca(2+)-calmodulin but was unaffected by the presence of macrophage tropomyosin. However, macrophage CaD did not behave as a Ca(2+)- and calmodulin-regulated actin-binding protein. These results, together with published data on other well-characterized actin bundling proteins, suggest that nonmuscle CaD could be essentially involved in the formation and organization of actin bundles at adhesion sites and cell surface projections. However, they afforded no evidence that the macrophage isoform might play a specific role in the Ca(2+)-dependent regulation of actin and myosin II interactions.  相似文献   

16.
The quantitation of G- and F-actin in cultured cells   总被引:6,自引:0,他引:6  
An improved method to quantitate the amounts of filamentous (F-actin) and monomeric (globular) actin (G-actin) in cultured cells was developed. Cells are lysed into a myosin-containing buffer and F-actin is removed by centrifugation. The pelleted F-actin is then depolymerized to G-actin in a 1 mM ATP-containing buffer for 1 h before measuring the levels of G-actin using the DNase I inhibition assay. Partitioning of G-actin in the supernatant (greater than 95%) and recovery of actin in both fractions (greater than 85%) were measured by adding [3H]actin to cultured cells. Actin in the separated fractions is stable for at least 72 h at 0 degree C. Asynchronous monolayer cultures of Chinese hamster ovary (CHO) cells contain 2.5 +/- 0.2% of the total protein as actin with 72.4 +/- 5.7% as F-actin. About 10% of this F-actin is not associated with the readily sedimented Triton-cytoskeleton. CHO cells grown in suspension contain 55.8% of the actin as F-actin; following plating about 90 min is required for these cells to flatten and for the F-actin level to reach the monolayer value of about 70%.  相似文献   

17.
Rotavirus is a major cause of infantile gastroenteritis with a multifactorial pathogenesis. As with many other pathogens, rotavirus infection and replication leads to rearrangement of the cytoskeleton with disorganization of cytoskeletal elements such as actin and cytokeratin through a calcium-dependent process that has not been fully characterized. The rotavirus enterotoxin NSP4, shown previously to elevate intracellular calcium levels when added exogenously as well as when expressed intracellularly, is a key player in intracellular calcium regulation during rotavirus infection. Here, we investigated the role NSP4 may play in actin rearrangement. Expression of NSP4 fused to enhanced green fluorescent protein (NSP4-EGFP), but not expression of EGFP alone, caused stabilization of long cellular projections in fully confluent HEK 293 cells. Cells expressing NSP4-EGFP for 24 h were also resistant to cell rounding induced by cytochalasin D. Quantification of filamentous actin (F-actin) content by using rhodamine-conjugated phalloidin and flow cytometry showed an elevated F-actin content in NSP4-EGFP-expressing and rotavirus-infected cells in comparison with that in nonexpressing and noninfected cells. Normalization of intracellular calcium levels prevented alterations of F-actin content. Observed changes in F-actin amounts correlated with the increased activation of the actin-remodeling protein cofilin. These calcium-dependent actin rearrangements induced by intracellular NSP4 expression may contribute to rotavirus pathogenesis by interfering with cellular processes dependent on subcortical actin remodeling, including ion transport and viral release.  相似文献   

18.
Stimulation-induced chromaffin cell cortical F-actin disassembly allows the movement of vesicles towards exocytotic sites. Scinderin (Sc), a Ca2+-dependent protein, controls actin dynamics. Sc six domains have three actin, two PIP2 and two Ca2+-binding sites. F-actin severing activity of Sc is Ca2+-dependent, whereas Sc-evoked actin nucleation is Ca2+-independent. Sc domain role in secretion was studied by co-transfection of human growth hormone (hGH) reporter gene and green fluorescent protein (GFP)-fusion Sc constructs. Cells over-expressing actin severing Sc1-6 or Sc1-2 (first and second actin binding sites) constructs, increased F-actin disassembly and hGH release upon depolarization. Over-expression of nucleating Sc5-6, Sc5 or ScABP3 (third actin site) constructs decreased F-actin disassembly and hGH release upon stimulation. Over-expression of ScL5-6 or ScL5 (lack of third actin site) produced no changes. During secretion, actin sites 1 and 2 are involved in F-actin severing, whereas site 3 is responsible for nucleation (polymerization). Sc functions as a molecular switch in the control of actin (disassembly left arrow over right arrow assembly) and release (facilitation left arrow over right arrow inhibition). The position of the switch (severing left arrow over right arrow nucleation) may be controlled by [Ca2+]i. Thus, increase in [Ca2+]i produced by stimulation-induced Ca2+ entry would increase Sc-evoked cortical F-actin disassembly. Decrease in [Ca2+]i by either organelle sequestration or cell extrusion would favor Sc-evoked actin nucleation.  相似文献   

19.
Cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone), a root releasing host-specific plant signal triggers chemotaxis and subsequent morphological changes in pathogenic Aphanomyces cochlioides zoospores before host penetration. The present study illustrates time-course changing patterns of cytoskeletal filamentous actin (F-actin) organization in the zoospores of A. cochlioides during rapid morphological changes (encystment and germination) after exposure to cochliophilin A. Confocal laser scanning microscopic analysis revealed that F-actin microfilaments remained concentrated at ventral groove and diffusely distributed in peripheral cytoplasm of the zoospore. These microfilaments dramatically rearranged and changed into granular F-actin plaques interconnected with fine arrays during encystment. A large patch of actin arrays accumulated at one pole of the cystospores just before germination. Then the actin plaques moved to the emerging germ tube where a distinct cap of microfilaments was seen at the tip of the emerging hypha. Zoospores treated with an inhibitor of F-actin polymerization, latrunculin B or motility halting and regeneration inducing compound nicotinamide, displayed different patterns of F-actin in both zoospores and cystospores than those obtained by the induction of cochliophilin A. Collectively, these results indicate that the host-specific plant signal cochliophilin A triggers a dynamic polymerization/depolymerization of F-actin in pathogenic A. cochlioides zoospores during early events of plant-peronosporomycete interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号