共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
TRB3 is a pseudokinase whose expression is regulated during stress response and changing of nutrient status. TRB3 negatively regulates Akt activation and noticeably, TRB3 expression is induced by insulin. Here, we sought to determine the dynamic relationship between TRB3 expression and Akt activation. We find that insulin induces TRB3 expression in cell type dependent manner such that in hepatic cells and adipocytes but not Beta cells and muscle cells. In Fao hepatoma cells, induction of TRB3 expression by insulin restrains Akt activation and renders Akt refractory to further activation. In addition, we have also analyzed the roles of PI3K and its downstream kinases Akt and atypical PKC in TRB3 expression. Induction of TRB3 expression by insulin requires PI3K. However, inactivation of Akt enhances TRB3 expression whereas inhibition of PKCzeta expression impairs TRB3 expression induced by insulin. Our data demonstrated that PI3K conveys both negative and positive signals to TRB3 expression. We suggest that insulin-induced TRB3 expression functions as an indicator how multiple insulin-induced signal transduction pathways are balanced. 相似文献
4.
Expression of RAS proteins can have either positive or negative effects on cell growth, differentiation and death. New technologies are being developed for the generation of animal models to address the questions of where, when and how much Ras is expressed during tumorigenesis, and how these disparate signals are integrated during multistage carcinogenesis. 相似文献
5.
6.
Dopamine neurons in the ventral tegmental area (VTA) have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ~25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context. 相似文献
7.
Correct guidance of axons to their targets depends on an intricate network of signaling molecules in the growth cone. Calcium and cAMP are two key regulators of whether axons are attracted or repelled by molecular gradients, but how these molecules interact to determine guidance responses remains unclear. Here, we constructed a mathematical model for the relevant signaling network, which explained a large range of previous biological data and made predictions for when axons will be attracted or repelled. We then confirmed these predictions experimentally, in particular showing that while small increases in cAMP levels promote attraction large increases do not, and that under some circumstances reducing cAMP levels promotes attraction. Together, these results show that a relatively simple mathematical model can quantitatively predict guidance decisions across a wide range of conditions, and that calcium and cAMP levels play a more complex role in these decisions than previously determined. 相似文献
8.
Lens-specific expression of the delta 1-crystallin gene is governed by an enhancer in the third intron, and the 30-bp-long DC5 fragment was found to be responsible for eliciting the lens-specific activity. Mutational analysis of the DC5 fragment identified two contiguous, interdependent positive elements and a negative element which overlaps the 3'-located positive element. Previously identified ubiquitous factors delta EF1 bound to the negative element and repressed the enhancer activity in nonlens cells. Mutation and cotransfection analyses indicated the existence of an activator which counteracts the action of delta EF1 in lens cells, probably through binding site competition. We also found a group of nuclear factors, collectively called delta EF2, which bound to the 5'-located positive element. delta EF2a and -b were the major species in lens cells, whereas delta EF2c and -d predominated in nonlens cells. These delta EF2 proteins probably cooperate with factors bound to the 3'-located element in activation in lens cells and repression in nonlens cells. delta EF2 proteins also bound to a promoter sequence of the gamma F-crystallin gene, suggesting that delta EF2 proteins are involved in lens-specific regulation of various crystallin classes. 相似文献
9.
10.
The Ste20 kinase misshapen regulates both photoreceptor axon targeting and dorsal closure, acting downstream of distinct signals 下载免费PDF全文
We have previously shown that the Ste20 kinase encoded by misshapen (msn) functions upstream of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase module in Drosophila. msn is required to activate the Drosophila JNK, Basket (Bsk), to promote dorsal closure of the embryo. A mammalian homolog of Msn, Nck interacting kinase, interacts with the SH3 domains of the SH2-SH3 adapter protein Nck. We now show that Msn likewise interacts with Dreadlocks (Dock), the Drosophila homolog of Nck. dock is required for the correct targeting of photoreceptor axons. We have performed a structure-function analysis of Msn in vivo in Drosophila in order to elucidate the mechanism whereby Msn regulates JNK and to determine whether msn, like dock, is required for the correct targeting of photoreceptor axons. We show that Msn requires both a functional kinase and a C-terminal regulatory domain to activate JNK in vivo in Drosophila. A mutation in a PXXP motif on Msn that prevents it from binding to the SH3 domains of Dock does not affect its ability to rescue the dorsal closure defect in msn embryos, suggesting that Dock is not an upstream regulator of msn in dorsal closure. Larvae with only this mutated form of Msn show a marked disruption in photoreceptor axon targeting, implicating an SH3 domain protein in this process; however, an activated form of Msn is not sufficient to rescue the dock mutant phenotype. Mosaic analysis reveals that msn expression is required in photoreceptors in order for their axons to project correctly. The data presented here genetically link msn to two distinct biological events, dorsal closure and photoreceptor axon pathfinding, and thus provide the first evidence that Ste20 kinases of the germinal center kinase family play a role in axonal pathfinding. The ability of Msn to interact with distinct classes of adapter molecules in dorsal closure and photoreceptor axon pathfinding may provide the flexibility that allows it to link to distinct upstream signaling systems. 相似文献
11.
Massimiliano Tomasulo 《Inorganica chimica acta》2007,360(3):938-944
We have designed and synthesized a photochromic spiropyran with a dithiolane appendage. The two sulfur atoms of the dithiolane ring encourage the adsorption of this compound on the surface of cadmium sulfide nanoparticles. The properties of the resulting photochrome-nanoparticle assemblies vary significantly with the experimental conditions selected for the preparation of the inorganic component. Nanoparticles prepared in the presence of tri-n-octylphosphine impose positive photochromism on the ligands. Instead, nanoparticles prepared in the presence of sodium dioctylsulfosuccinate impose negative photochromism on the ligand. This behavior is a consequence of the difference in the surface morphology of the two sets of nanoparticles. Indeed, emission spectra confirm the presence of surface defects on the nanoparticles exhibiting negative photochromism. Presumably, electrostatic interactions between these surface defects and the colored and zwitterionic isomer of the ligand are responsible for the transition from positive to negative photochromism. Thus, our studies demonstrate that the microscopic environment around a photochromic switch can regulate the relative stabilities of its colorless and colored states as well as their isomerization kinetics. 相似文献
12.
13.
Previous studies have demonstrated that consumption of a low-valued food substance may decrease if access to a high-valued substance will soon be available (negative anticipatory contrast). Research has also demonstrated that responding for a low-valued reinforcer may increase if responding for a high-valued reinforcer will soon be possible (positive induction). The present experiment employed rats to respond in a procedure similar to that typically used to produce negative anticipatory contrast. The goal was to determine what factors contribute to when a contrast or an induction effect will occur. Based on previous research, the influence of auditory cues, temporal delays, food deprivation, and location of substance delivery were investigated. Auditory cues and temporal delays did little to influence whether subjects increased or decreased their consumption of 1% sucrose when access to 32% sucrose was upcoming. The appearance of contrast or induction was related to level of deprivation, with deprivation promoting induction. Which effect occurred also depended on whether subjects consumed the two substances from one spout in one location (induction) or from two different spouts in two different locations (contrast). The present results help identify the procedural link(s) between these two effects. They also provide insight to why positive induction may occur (i.e., higher-order place conditioning). 相似文献
14.
Xu X Warrington AE Wright BR Bieber AJ Van Keulen V Pease LR Rodriguez M 《Journal of neurochemistry》2011,119(1):100-112
Mouse and human IgMs support neurite extension from primary cerebellar granule neurons. In this study using primary hippocampal and cortical neurons, we demonstrate that a recombinant human IgM, rHIgM12, promotes axon outgrowth by coupling membrane domains (lipid rafts) to microtubules. rHIgM12 binds to the surface of neuron and induces clustering of cholesterol and ganglioside GM1. After cell binding and membrane fractionation, rHIgM12 gets segregated into two pools, one associated with lipid raft fractions and the other with the detergent-insoluble cytoskeleton-containing pellet. Membrane-bound rHIgM12 co-localized with microtubules and co-immuno precipitated with β3-tubulin. rHIgM12-membrane interaction also enhanced the tyrosination of α-tubulin indicating a stabilization of new neurites. When presented as a substrate, rHIgM12 induced axon outgrowth from primary neurons. We now demonstrate that a recombinant human mAb can induce signals in neurons that regulate membrane lipids and microtubule dynamics required for axon extension. We propose that the pentameric structure of the IgM is critical to cross-link membrane lipids and proteins resulting in signaling cascades. 相似文献
15.
Xiao-Hui Xu Cai-Yun Deng Yang Liu Miao He Jian Peng Tong Wang Lei Yuan Zhi-Sheng Zheng Perry J Blackshear Zhen-Ge Luo 《Cell research》2014,24(5):576-594
Axon development requires membrane addition from the intracellular supply, which has been shown to be mediated by Rab10-positive plasmalemmal precursor vesicles (PPVs). However, the molecular mechanisms underlying the membrane trafficking processes of PPVs remain unclear. Here, we show that myristoylated alanine-rich C-kinase substrate (MARCKS) mediates membrane targeting of Rab10-positive PPVs, and this regulation is critical for axon development. We found that the GTP-locked active form of Rab10 binds to membrane-associated MARCKS, whose affinity depends on the phosphorylation status of the MARCKS effector domain. Either genetic silencing of MARCKS or disruption of its interaction with Rab10 inhibited axon growth of cortical neurons, impaired docking and fusion of Rab10 vesicles with the plasma membrane, and consequently caused a loss of membrane insertion of axonal receptors responsive to extracellular axon growth factors. Thus, this study has identified a novel function of MARCKS in mediating membrane targeting of PPVs during axon development. 相似文献
16.
17.
A.V. Kuznetsov 《Computer methods in biomechanics and biomedical engineering》2013,16(7):699-706
A model describing the propagation of positive injury signals from the lesion site in an axon towards the neuron soma is described. It is assumed that these signals are driven by dynein molecular motors. An analytical solution that accounts for the probability density function (pdf) of a dynein velocity distribution is obtained. Two examples of pdf of dynein velocity distributions that follow from the results published in Ross et al. (2006, Processive bidirectional motion of dynein–dynactin complexes in vitro. Nat Cell Biol. 8:562–570) and Deinhardt et al. (2006, Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52:293–305) are considered. The effect of dynein velocity distribution on the rate of spreading of the signal wave is discussed. It is demonstrated that the obtained solution can be applied to the problem of how neurons measure the distance between the lesion site and the neuron soma. 相似文献
18.
Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. 总被引:8,自引:0,他引:8
S Mariathasan A Zakarian D Bouchard A M Michie J C Zú?iga-Pflücker P S Ohashi 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(9):4966-4973
During thymocyte development, high-affinity/avidity TCR engagement leads to the induction of negative selection and apoptosis, while lower TCR affinity-avidity interactions lead to positive selection and survival. To elucidate how these extracellular interactions are translated into intracellular signals that distinguish between positive and negative selection, we developed a culture system in which naive double-positive thymocytes were either induced to differentiate along the CD8(+) lineage pathway or were triggered for clonal deletion. Using this system, we show that sustained low level activation of extracellular signal-regulated kinases (ERKs) promotes positive selection, whereas strong but transient ERK activation is coupled with negatively selecting stimuli. Importantly, similar ERK activation profiles were demonstrated during positive selection for strong agonist ligands presented at low concentrations or weak agonist ligands. This is consistent with the affinity/avidity model and a role for strong or weak agonists during positive selection. Surprisingly, the addition of a pharmacological inhibitor which blocks ERK activation prevented the induction of negative selection. These data suggest that the duration and strength of the TCR signal is involved in discriminating between positive and negative selection. 相似文献
19.
20.
Blakely BD Bye CR Fernando CV Horne MK Macheda ML Stacker SA Arenas E Parish CL 《PloS one》2011,6(3):e18373
During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway). Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a-/- mice, where fasciculation of the medial forebrain bundle (MFB) as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance. 相似文献