首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatio-temporal changes of signaling molecules in response to G protein-coupled receptors (GPCR) stimulation is a poorly understood process in intestinal epithelial cells. Here we investigate the dynamic mechanisms associated with GPCR signaling in living rat intestinal epithelial cells by characterizing the intracellular translocation of protein kinase D (PKD), a serine/threonine protein kinase involved in mitogenic signaling in intestinal epithelial cells. Analysis of the intracellular steady-state distribution of green fluorescent protein (GFP)-tagged PKD indicated that in non-stimulated IEC-18 cells, GFP-PKD is predominantly cytoplasmic. However, cell stimulation with the GPCR agonist vasopressin induces a rapid translocation of GFP-PKD from the cytosol to the plasma membrane that is accompanied by its activation via protein kinase C (PKC)-mediated process and posterior plasma membrane dissociation. Subsequently, active PKD is imported into the nuclei where it transiently accumulates before being exported into the cytosol by a mechanism that requires a competent Crm1 nuclear export pathway. These findings provide evidence for a mechanism by which PKC coordinates in intestinal epithelial cells the translocation and activation of PKD in response to vasopressin-induced GPCR activation.  相似文献   

2.
Protein kinase D (PKD) is a serine/threonine protein kinase activated by G protein-coupled receptor (GPCR) agonists through an incompletely characterized mechanism that includes its reversible plasma membrane translocation and activation loop phosphorylation via a protein kinase C (PKC)-dependent pathway. To gain a better understanding of the mechanism regulating the activation of PKD in response to GPCR stimulation, we investigated the role of its rapid plasma membrane translocation on its activation loop phosphorylation and identified the endogenous PKC isozyme that mediates that event in vivo. We had found that the activation loop of a PKD mutant, with reduced affinity for diacylglycerol and phorbol esters, was only phosphorylated upon its plasma membrane association. We also found that the activation loop phosphorylation and rapid plasma membrane dissociation of PKD were inhibited either by preventing the plasma membrane translocation of PKCepsilon, through abolition of its interaction with receptor for activated C kinase, or by suppressing the expression of PKCepsilon via specific small interfering RNAs. Thus, this study demonstrates that the plasma membrane translocation of PKD, in response to GPCR stimulation, is necessary for the PKCepsilon-mediated phosphorylation of the activation loop of PKD and that this event requires the translocation of both kinases to the plasma membrane. Based on these and previous results, we propose a model of GPCR-mediated PKD regulation that integrates its changes in distribution, catalytic activity, and multisite phosphorylation.  相似文献   

3.
Protein kinase D (PKD)/protein kinase C mu is a serine/threonine protein kinase activated by growth factors, antigen-receptor engagement, and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires protein kinase C (PKC) activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular distribution of PKD was analyzed in live cells by imaging fluorescent protein-tagged PKD and in fixed cells by immunocytochemistry. We found that PKD shuttled between the cytoplasm and the nucleus in both fibroblasts and epithelial cells. Cell stimulation with mitogenic GPCR agonists that activate PKD induced a transient nuclear accumulation of PKD that was prevented by inhibiting PKC activity. The nuclear import of PKD requires its cys2 domain in conjunction with a nuclear import receptor, while its nuclear export requires its pleckstrin homology domain and a competent Crm1-dependent nuclear export pathway. This study thus characterizes the regulated nuclear transport of a signaling molecule in response to mitogenic GPCR agonists and positions PKD as a serine kinase whose kinase activity and intracellular localization is coordinated by PKC.  相似文献   

4.
Protein kinase D (PKD)/protein kinase Cmicro (PKCmicro, a serine/threonine protein kinase with distinct structural and enzymological properties, is rapidly activated in intact cells via PKC. The amino-terminal region of PKD contains a cysteine-rich domain (CRD) that directly binds phorbol esters with a high affinity. Here, we show that treatment of transfected RBL 2H3 cells with phorbol 12,13-dibutyrate (PDB) induces a striking CRD-dependent translocation of PKD from the cytosol to the plasma membrane, as shown by real time visualization of a functional green fluorescent protein (GFP)-PKD fusion protein. A single amino acid substitution in the second cysteine-rich motif of PKD (P287G) prevented PDB-induced membrane translocation but did not affect PKD activation. Our results indicate that PKD translocation and activation are distinct processes that operate in parallel to regulate the activity and localization of this enzyme in intact cells.  相似文献   

5.
Tachykinins, acting through NK(3) receptors (NK(3)R), contribute to excitatory transmission to intrinsic primary afferent neurons (IPANs) of the small intestine. Although this transmission is dependent on protein kinase C (PKC), its maintenance could depend on protein kinase D (PKD), a downstream target of PKC. Here we show that PKD1/2-immunoreactivity occurred exclusively in IPANs of the guinea pig ileum, demonstrated by double staining with the IPAN marker NeuN. PKCepsilon was also colocalized with PKD1/2 in IPANs. PKCepsilon and PKD1/2 trafficking was studied in enteric neurons within whole mounts of the ileal wall. In untreated preparations, PKCepsilon and PKD1/2 were cytosolic and no signal for activated (phosphorylated) PKD was detected. The NK(3)R agonist senktide evoked a transient translocation of PKCepsilon and PKD1/2 from the cytosol to the plasma membrane and induced PKD1/2 phosphorylation at the plasma membrane. PKCepsilon translocation was maximal at 10 s and returned to the cytosol within 2 min. Phosphorylated-PKD1/2 was detected at the plasma membrane within 15 s and translocated to the cytosol by 2 min, where it remained active up to 30 min after NK(3)R stimulation. PKD1/2 activation was reduced by a PKCepsilon inhibitor and prevented by NK(3)R inhibition. NK(3)R-mediated PKCepsilon and PKD activation was confirmed in HEK293 cells transiently expressing NK(3)R and green fluorescent protein-tagged PKCepsilon, PKD1, PKD2, or PKD3. Senktide caused membrane translocation and activation of kinases within 30 s. After 15 min, phosphorylated PKD had returned to the cytosol. PKD activation was confirmed through Western blotting. Thus stimulation of NK(3)R activates PKCepsilon and PKD in sequence, and sequential activation of these kinases may account for rapid and prolonged modulation of IPAN function.  相似文献   

6.
The protein kinase D (PKD) family consists of three serine/threonine kinases: PKC micro/PKD, PKD2, and PKCnu/PKD3. Whereas PKD has been the focus of most studies, virtually nothing is known about the effect of G protein-coupled receptor agonists (GPCR) on the regulatory properties and intracellular distribution of PKD3. Consequently, we examined the mechanism that mediates its activation and intracellular distribution. GPCR agonists induced a rapid activation of PKD3 by a protein kinase C (PKC)-dependent pathway that leads to the phosphorylation of the activation loop of PKD3. Comparison of the steady-state distribution of endogenous or tagged PKD3 versus PKD and PKD2 in unstimulated cells indicated that whereas PKD and PKD2 are predominantly cytoplasmic, PKD3 is present both in the nucleus and cytoplasm. This distribution of PKD3 results from its continuous shuttling between both compartments by a mechanism that requires a nuclear import receptor and a competent CRM1-nuclear export pathway. Cell stimulation with the GPCR agonist neurotensin induced a rapid and reversible plasma membrane translocation of PKD3 that is PKC-dependent. Interestingly, the nuclear accumulation of PKD3 can be dramatically enhanced in response to its activation. Thus, this study demonstrates that the intracellular distribution of PKD isoenzymes are distinct, and suggests that their signaling properties are regulated by differential localization.  相似文献   

7.
The importance of activation loop phosphorylation in the regulation of protein kinase D (PKD/protein kinase C (PKC) mu) activity has become controversial. In order to clarify the mechanism(s) of PKD activation, we developed a novel phosphospecific antibody recognizing phosphorylated Ser(748) in PKD (pS748). Western blot analysis with the pS748 antibody, carried out with a variety of PKD forms and in a variety of cell types including full-length PKD transfected in COS-7 and HEK 293 cells, a green fluorescent protein-PKD fusion protein transfected in either Swiss 3T3 fibroblasts or Madin-Darby canine kidney epithelial cells, and endogenous PKD expressed in A20 lymphocytes and Rat-1 fibroblasts, indicated that Ser(748) phosphorylation was absent from unstimulated cells. In contrast, dramatic increases in Ser(748) phosphorylation were induced by phorbol esters, bombesin, or cross-linking of B lymphocyte antigen receptors or by cotransfection with active PKCepsilon or PKCeta. Western analysis using a second phosphospecific antibody, which primarily recognizes PKD phosphorylated at Ser(744), revealed that Ser(744) phosphorylation accompanies Ser(748) phosphorylation during PKD activation in vivo. Ser(744)/Ser(748) phosphorylation requires PKC but not PKD activity, indicative of transphosphorylation. Our results provide new experimental evidence indicating that activation loop phosphorylation at Ser(744) and Ser(748) occurs during PKD activation in vivo and support the notion of a PKC-PKD phosphorylation cascade.  相似文献   

8.
Kidins220 (kinase D-interacting substrate of 220 kDa) is a novel neurospecific protein recently cloned as the first substrate for the Ser/Thr kinase protein kinase D (PKD). Herein we report that Kidins220 is constitutively associated to lipid rafts in PC12 cells, rat primary cortical neurons, and brain synaptosomes. Immunocytochemistry and confocal microscopy together with sucrose gradient fractionation show co-localization of Kidins220 and lipid raft-associated proteins. In addition, cholesterol depletion of cell membranes with methyl-beta-cyclodextrin dramatically alters Kidins220 localization and detergent solubility. By studying the putative involvement of lipid rafts in PKD activation and signaling we have found that active PKD partitions in lipid raft fractions after sucrose gradient centrifugation and that green fluorescent protein-PKD translocates to lipid raft microdomains at the plasma membrane after phorbol ester treatment. Strikingly, lipid rafts disruption by methyl-beta-cyclodextrin delays green fluorescent protein-PKD translocation, as determined by live cell confocal microscopy, and activates PKD, increasing Kidins220 phosphorylation on Ser(919) by a mechanism involving PKCepsilon and the small soluble tyrosine kinase Src. Collectively, these results reveal the importance of lipid rafts on PKD activation, translocation, and downstream signaling to its substrate Kidins220.  相似文献   

9.
PKD is the founding member of a novel protein kinase family that also includes PKD2 and PKD3. PKD has been the focus of most studies up to date, but little is known about the mechanisms that mediate PKD3 activation. Here, we show that addition of aluminum fluoride to COS-7 cells cotransfected with PKD3 and Galpha13 or Galpha12 induced PKD3 activation, which was associated with a transient plasma membrane translocation of cytosolic PKD3. Treatment with Clostridium difficile toxin B blocked PKD3 activation induced by either bombesin or by aluminum fluoride-stimulated Galpha12/13 but did not affect Galphaq-induced PKD3 activation. Furthermore, PKD3 immunoprecipitated from cells cotransfected with a constitutively active Rac (RacV12) exhibited a marked increase in PKD3 basal catalytic activity. In contrast, cotransfection with active Rho (RhoQ63L), Cdc42 (Cdc42Q61L), or Ras (RasV12) did not promote PKD3 activation. Expression of either COOH-terminal dominant-negative fragment of Galpha13 or dominant negative Rac (Rac N17) attenuated bombesin-induced PKD3 activation. Treatment with protein kinase C (PKC) inhibitors prevented the increase in PKD3 activity induced by RacV12 and aluminum fluoride-stimulated Galpha12/13. The catalytic activation of PKD3 in response to RacV12, alpha12/13 signaling or bombesin correlated with Ser-731/Ser-735 phosphorylation in the activation loop of this enzyme. Our results indicate that Galpha12/13 and Rac are important components in the signal transduction pathways that mediate bombesin receptor-induced PKD3 activation.  相似文献   

10.
The protein kinase D (PKD) family consists of three serine/threonine protein kinases: PKC mu/PKD, PKD2, and PKC nu/PKD3. While PKD has been the focus of most studies to date, no information is available on the intracellular distribution of PKD2. Consequently, we examined the mechanism that regulates its intracellular distribution in human pancreatic carcinoma Panc-1 cells. Analysis of the intracellular steady-state distribution of fluorescent-tagged PKD2 in unstimulated cells indicated that this kinase is predominantly cytoplasmic. Cell stimulation with the G protein-coupled receptor agonist neurotensin induced a rapid and reversible plasma membrane translocation of PKD2 by a mechanism that requires PKC activity. In contrast to the other PKD isoenzymes, PKD2 activation did not induce its redistribution from the cytoplasm to the nucleus. Thus, this study demonstrates that the regulation of the distribution of PKD2 is distinct from other PKD isoenzymes, and suggests that the differential spatio-temporal localization of these signaling molecules regulates their specific signaling properties.  相似文献   

11.
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. We previously identified DGK as one of nine mammalian DGK isoforms and reported on its regulation by interaction with RhoA and by translocation to the plasma membrane in response to noradrenaline. Here, we have investigated how the localization of DGK, fused to green fluorescent protein, is controlled upon activation of G protein-coupled receptors in A431 cells. Extracellular ATP, bradykinin, or thrombin induced DGK translocation from the cytoplasm to the plasma membrane within 2-6 min. This translocation, independent of DGK activity, was preceded by protein kinase C (PKC) translocation and was blocked by PKC inhibitors. Conversely, activation of PKC by 12-O-tetradecanoylphorbol-13-acetate induced DGK translocation. Membrane-permeable DAG (dioctanoylglycerol) also induced DGK translocation but in a PKC (staurosporin)-independent fashion. Mutations in the cysteine-rich domains of DGK abrogated its hormone- and DAG-induced translocation, suggesting that these domains are essential for DAG binding and DGK recruitment to the membrane. We show that DGK interacts selectively with and is phosphorylated by PKCepsilon and -eta and that peptide agonist-induced selective activation of PKCepsilon directly leads to DGK translocation. Our data are consistent with the concept that hormone-induced PKC activation regulates the intracellular localization of DGK, which may be important in the negative regulation of PKCepsilon and/or PKCeta activity.  相似文献   

12.
Protein kinase D localizes in the Golgi and regulates protein transport from the Golgi to the plasma membrane. In the present study, we found that PKD3, a novel member of the PKD family, and its fluorescent protein fusions localized in the Golgi and in the vesicular structures that are in part marked by endosome markers. Fluorescent recovery after photobleaching (FRAP) showed that the PKD3-associated vesicular structures were constantly forming and dissolving, reflecting active subcellular structures. FRAP on plasma membrane-located PKD3 indicated a slower recovery of PKD3 fluorescent signal compared to those of PKC isoforms, implying a different targeting mechanism at the plasma membrane. VAMP2, the vesicle-localized v-SNARE, was later identified as a novel binding partner of PKD3 through yeast two-hybrid screening. PKD3 directly interacted with VAMP2 in vitro and in vivo, and colocalized in part with VAMP2 vesicles in cells. PKD3 did not phosphorylate VAMP-GFP and the purified GST-VAMP2 protein in in vitro phosphorylation assays. Rather, PKD3 was found to promote the recruitment of VAMP2 vesicles to the plasma membrane in response to PMA, while the kinase dead PKD3 abolished this effect. Thus, the kinase activity of PKD3 was required for PMA-induced plasma membrane trafficking of VAMP2. In summary, our findings suggest that PKD3 localizes to vesicular structures that are part of the endocytic compartment. The vesicular distribution may be attributed in part to the direct interaction between PKD3 and vesicle-associated membrane protein VAMP2, through which PKD3 may regulate VAMP2 vesicle trafficking by facilitating its recruitment to the target membrane.  相似文献   

13.
Our previous study showed differential subcellular localization of protein kinase C (PKC) delta by phorbol esters and related ligands, using a green fluorescent protein-tagged construct in living cells. Here we compared the abilities of a series of symmetrically substituted phorbol 12,13-diesters to translocate PKC delta. In vitro, the derivatives bound to PKC with similar potencies but differed in rate of equilibration. In vivo, the phorbol diesters with short, intermediate, and long chain fatty acids induced distinct patterns of translocation. Phorbol 12,13-dioctanoate and phorbol 12,13-nonanoate, the intermediate derivatives and most potent tumor promoters, showed patterns of translocation typical of phorbol 12-myristate 13-acetate, with plasma membrane and subsequent nuclear membrane translocation. The more hydrophilic compounds (phorbol 12,13-dibutyrate and phorbol 12,13-dihexanoate) induced a patchy distribution in the cytoplasm, more prominent nuclear membrane translocation, and little plasma membrane localization at all concentrations examined (100 nM to 10 microM). The highly lipophilic derivatives, phorbol 12,13-didecanoate and phorbol 12, 13-diundecanoate, at 1 microM caused either plasma membrane translocation only or no translocation at incubation times up to 60 min. Our results indicate that lipophilicity of phorbol esters is a critical factor contributing to differential PKC delta localization and thereby potentially to their different biological activities.  相似文献   

14.
In electrically excitable cells, membrane depolarization opens voltage-dependent Ca(2+) channels eliciting Ca(2+) influx, which plays an important role for the activation of protein kinase C (PKC). However, we do not know whether Ca(2+) influx alone can activate PKC. The present study was conducted to investigate the Ca(2+) influx-induced activation mechanisms for two classes of PKC, conventional PKC (cPKC; PKCalpha) and novel PKC (nPKC; PKCtheta), in insulin-secreting cells. We have demonstrated simultaneous translocation of both DsRed-tagged PKCalpha to the plasma membrane and green fluorescent protein (GFP)-tagged myristoylated alanine-rich C kinase substrate to the cytosol as a dual marker of PKC activity in response to depolarization-evoked Ca(2+) influx in the DsRed-tagged PKCalpha and GFP-tagged myristoylated alanine-rich C kinase substrate co-expressing cells. The result indicates that Ca(2+) influx can generate diacylglycerol (DAG), because cPKC is activated by Ca(2+) and DAG. We showed this in three different ways by demonstrating: 1) Ca(2+) influx-induced translocation of GFP-tagged C1 domain of PKCgamma, 2) Ca(2+) influx-induced translocation of GFP-tagged pleckstrin homology domain, and 3) Ca(2+) influx-induced translocation of GFP-tagged PKCtheta, as a marker of DAG production and/or nPKC activity. Thus, Ca(2+) influx alone via voltage-dependent Ca(2+) channels can generate DAG, thereby activating cPKC and nPKC, whose activation is structurally independent of Ca(2+).  相似文献   

15.
The specificity of many signal transduction pathways relies on the spatiotemporal features of each signaling step. G protein-coupled receptor-mediated activation of protein kinases leads to diverse cellular effects. Upon receptor activation, PKD1 and several C-type protein kinases (PKCs), translocate to the plasma membrane and become catalytically active. Here we show that, unlike PKCs, PKD1 remains active at the membrane for hours. The two DAG binding C1 domains of PKD1 have distinct functional roles in targeting and maintaining PKD1 at the plasma membrane. C1A achieves fast, maximal, and reversible translocation, while C1B translocates partially, but persistently, to the plasma membrane. The persistent localization requires the C1B domain of PKD1, which binds Galphaq. We incorporate the kinetics of PKD1 translocation into a three-state model that suggests how PKD1 binding to DAG and Galphaq uniquely encodes frequency-dependent PKD1 signaling.  相似文献   

16.
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.  相似文献   

17.
We examined the translocation of diacylglycerol kinase (DGK) alpha and gamma fused with green fluorescent protein in living Chinese hamster ovary K1 cells (CHO-K1) and investigated temporal and spatial correlations between DGK and protein kinase C (PKC) when both kinases are overexpressed. DGKalpha and gamma were present throughout the cytoplasm of CHO-K1 cells. Tetradecanoylphorbol 13-acetate (TPA) induced irreversible translocation of DGKgamma, but not DGKalpha, from the cytoplasm to the plasma membrane. The (TPA)-induced translocation of DGKgamma was inhibited by the mutation of C1A but not C1B domain of DGKgamma and was not inhibited by staurosporine. Arachidonic acid induced reversible translocation of DGKgamma from the cytoplasm to the plasma membrane, whereas DGKalpha showed irreversible translocation to the plasma membrane and the Golgi network. Purinergic stimulation induced reversible translocation of both DGKgamma and alpha to the plasma membrane. The timing of the ATP-induced translocation of DGKgamma roughly coincided with that of PKCgamma re-translocation from the membrane to the cytoplasm. Furthermore, re-translocation of PKCgamma was obviously hastened by co-expression with DGKgamma and was blocked by an inhibitor of DGK (R59022). These results indicate that DGK shows subtype-specific translocation depending on extracellular signals and suggest that PKC and DGK are orchestrated temporally and spatially in the signal transduction.  相似文献   

18.
Persistent activation of protein kinase D (PKD) via protein kinase C (PKC)-mediated signal transduction is accompanied by phosphorylation at Ser(744) and Ser(748) located in the catalytic domain activation loop, but whether PKC isoforms directly phosphorylate these residues, induce PKD autophosphorylation, or recruit intermediate upstream kinase(s) is unclear. Here, we explore the mechanism whereby PKC activates PKD in response to cellular stimuli. We first assessed in vitro PKC-PKD transphosphorylation and PKD activation. A PKD738-753 activation loop peptide was well phosphorylated by immunoprecipitated PKC isoforms, consistent with similarities between the loop and their known substrate specificities. A similar peptide with glutamic acid replacing Ser(748) was preferentially phosphorylated by PKCepsilon, suggesting that PKD containing phosphate at Ser(748) is rapidly targeted by this isoform at Ser(744). When incubated in the presence of phosphatidylserine, phorbol 12,13-dibutyrate and ATP, intact PKD slowly autophosphorylated in the activation loop but only at Ser(748). In contrast, addition of purified PKCepsilon to the incubation mixture induced rapid Ser(744) and Ser(748) phosphorylation, concomitant with persistent 2-3-fold increases in PKD activity, measured using reimmunoprecipitated PKD to phosphorylate an exogenous peptide, syntide-2. We also further examined pleckstrin homology domain-mediated PKD regulation to determine its relationship with activation loop phosphorylation. The high constitutive activity of the pleckstrin homology (PH) domain deletion mutant PKD-deltaPH was not abrogated by mutation of Ser(744) and Ser(748) to alanines, suggesting that one function of activation loop phosphorylation in the PKD activation mechanism is to relieve autoinhibition by the PH domain. These studies provide evidence of a direct PKCepsilon-PKD phosphorylation cascade and provide additional insight into the activation mechanism.  相似文献   

19.
Protein kinase D (PKD) is a member of the AGC family of Ser/Thr kinases and is distantly related to protein kinase C (PKC). Formerly known as PKCmu, PKD contains protein domains not found in conventional PKC isoforms. A functional pleckstrin homology (PH) domain is critical for the regulation of PKD activity. Here we report that PKD is tyrosine-phosphorylated within the PH domain, leading to activation. This phosphorylation is mediated by a pathway that consists of the Src and Abl tyrosine kinases and occurs in response to stimulation with pervanadate and oxidative stress. Mutational analysis revealed three tyrosine phosphorylation sites (Tyr(432), Tyr(463), and Tyr(502)), which are regulated by the Src-Abl pathway, and phosphorylation of only one of these (Tyr(463)) leads to PKD activation. By using a phospho-specific antibody, we show that Abl directly phosphorylates PKD at Tyr(463) in vitro, and in cells phosphorylation of this site is sufficient to mediate full activation of PKD. Mutation of the other two sites, Tyr(432) and Tyr(502), had no significant influence on PKD activity. These data reveal a tyrosine phosphorylation-dependent activation mechanism for PKD and suggest that this event contributes to the release of the autoinhibitory PKD PH domain leading to kinase activation and downstream responses.  相似文献   

20.
Elucidation of isoenzyme-specific functions of individual protein kinase C (PKC) isoenzymes has emerged as an important goal in the study of this family of kinases, but this task has been complicated by modest substrate specificity and high homology among the individual members of each PKC subfamily. The classical PKCbetaI and PKCbetaII isoenzymes provide a unique opportunity because they are the alternatively spliced products of the beta gene and are 100% identical except for the last 50 of 52 amino acids. In this study, it is shown that green fluorescent protein-tagged PKCbetaII and not PKCbetaI translocates to a recently described juxtanuclear site of localization for PKCalpha and PKCbetaII isoenzymes that arises with sustained stimulation of PKC. Mechanistically, translocation of PKCbetaII to the juxtanuclear region required kinase activity. PKCbetaII, but not PKCbetaI, was found to activate phospholipase D within this time frame. Inhibitors of phospholipase D (1-butanol and a dominant negative construct) prevented the translocation of PKCbetaII to the juxtanuclear region but not to the plasma membrane, thus demonstrating a role for phospholipase D in the juxtanuclear translocation of PKCbetaII. Taken together, these results define specific biochemical and cellular actions of PKCbetaII when compared with PKCbetaI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号