首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Use of embryo transfer can lead to increases in rates of genetic improvement from selection programs from as little as 5% to a maximum of near 100%, depending on species, trait, and extent of use of other tools such as A.I. In general, embryo transfer will have much less impact on rates of genetic improvement than A.I., and in a dairy cattle program where A.I. is used effectively, embryo transfer is likely to add less than 10% to rate of genetic improvement. The potential for increasing rate of genetic improvement appears to be greater in beef cattle. In any species with low reproductive rate, embryo transfer offers a potential means of rapidly increasing numbers of animals of a breed, strain, mutant genotype or group exceeding a stringent threshold; such use may be of considerable value to a specific genetic research or multiplication program. Maximizing selection intensity through combined use of A.I. and embryo transfer can lead to a rapid increase in inbreeding, and steps should be taken to avoid this in any population which it is desired to maintain in the long term. Embryo transfer offers an effective tool for research on maternal-fetal and fetal-fetal interactions, and in this way can make important indirect contributions to more efficient breeding programs. With improved embryo storage capability, embryo transfer has the potential for useful contributions in the areas of transfer of germ plasm between countries, preservation of rare breeds, and provision of genetically stable control populations.  相似文献   

4.
Genetic regulation of embryo death and senescence   总被引:1,自引:0,他引:1  
Betts DH  King WA 《Theriogenology》2001,55(1):171-191
The survival of the preimplantation mammalian embryo depends not only on providing the proper conditions for normal development but also on acquiring the mechanisms by which embryos cope with adversity. The ability of the early conceptus to resist stress as development proceeds may be regulated by diverse factors such as the attainment of a cell death program and protective mechanisms involving stress-induced genes and/or cell cycle modulators. This paper reviews the recent research on the genetic regulation of early embryo cell death and senescence focussing on the bovine species where possible. The different modes of cell death will be explained, clarifying the confusing cell death terminology, by advocating the recommendations set forth by the Cell Death Nomenclature Committee to extend to the embryology research field. Specific pro-death and anti-death genes will be discussed with reference to their expression patterns during early mammalian embryogenesis.  相似文献   

5.
Genetic selection of boars   总被引:2,自引:0,他引:2  
Safranski TJ 《Theriogenology》2008,70(8):1310-1316
Selection of boars by visual appraisal is the simplest and oldest method used by the swine industry. However, individual performance testing, and later use of computers to incorporate relatives' data and account for environmental variation, resulted in greater rate of improvement for economically important traits. Examples of molecular genetic tools that have increased improvement for some traits are also discussed. Accurate identification of genetic merit is increasingly important with widespread use of AI and resultant greater progeny number per sire. Historically, selection was to produce desirable progeny; however, with the majority of boars now housed in dedicated boar facilities, and the efficiency of sperm production being recorded, boar stud personnel are increasingly interested in selection of boars for fertility traits. Selecting boars that are lean and heavily muscled and have good semen parameters may be problematic, given the genetic relationships among the traits. Whereas conventional animal breeding methods will remain important, use of molecular tools will increase, and identification of a boar's fertility potential at birth will allow earlier and more efficient selection of high-fertility boars. Ability to achieve acceptable female reproduction with frozen semen would facilitate selection for longevity. However, this would lengthen the generation interval and could dilute selection intensity for other traits, as it requires indirect selection for semen freezability.  相似文献   

6.
7.
8.
Oviposition site selection and embryo mortality in perch   总被引:2,自引:0,他引:2  
Egg strands of perch Perca fluviatilis around the margins of a lake were associated significantly with submerged vegetation. The proportion of dead embryos was significantly higher in egg strands deposited directly on the lake bottom than those on submerged vegetation.  相似文献   

9.
The prevalence of recombination in eukaryotes poses one of the most puzzling questions in biology. The most compelling general explanation is that recombination facilitates selection by breaking down the negative associations generated by random drift (i.e. Hill–Robertson interference, HRI). I classify the effects of HRI owing to: deleterious mutation, balancing selection and selective sweeps on: neutral diversity, rates of adaptation and the mutation load. These effects are mediated primarily by the density of deleterious mutations and of selective sweeps. Sequence polymorphism and divergence suggest that these rates may be high enough to cause significant interference even in genomic regions of high recombination. However, neither seems able to generate enough variance in fitness to select strongly for high rates of recombination. It is plausible that spatial and temporal fluctuations in selection generate much more fitness variance, and hence selection for recombination, than can be explained by uniformly deleterious mutations or species-wide selective sweeps.  相似文献   

10.
Genetic analysis of the cellularization of the Drosophila embryo.   总被引:2,自引:0,他引:2  
The synchronous cellularization of the Drosophila embryo at the blastoderm stage provides a unique system for studying the molecular mechanisms involved in cytokinesis, using genetical and biochemical approaches. The cellularization process requires the major components of the embryonic cytoskeleton that are deposited into the egg during oogenesis. Genetical analysis indicates that it requires also the products of additional maternally-acting genes, as well as that of a limited set of zygotically-acting genes. The cellularization defective phenotypes associated with small deficiencies uncovering these latter loci reveal specific steps within this complex process. The molecular analysis of these genes will ultimately provide meaningful insights into the normal process of cellularization. Among them, the serendipity alpha gene encodes a membrane-associated protein, which is exclusively accumulated during cellularization, and is required for the reorganization of the microfilaments as the onset of cellularization.  相似文献   

11.
Summary The mutationbicaudal (Bull, 1966) causes embryos to develop a longitudinal mirror image duplication of the posteriormost abdominal segments, while head and thorax are missing. These embryos occur with varying frequencies among eggs laid by mutant females, irrespective of the paternal genotype. Recombination and deletion mapping indicate thatbicaudal (bic) is a recessive, hypomorphic, maternal-effect mutation mapping at a single locus on the second chromosome ofDrosophila melanogaster close tovg (67.0±0.1). The frequency of bicaudal embryos depends on the age of the mother, her genetic constitution and the temperature at which she is raised. Best producers are very young females hemizygous forbic (bic/Df(2)vg B ) at 28° C. Under these conditions 80% to 90% of the eggs which differentiate can show the bicaudal embryo phenotype. Upon ageing of the mother the frequency of bicaudal embryos declines rapidly, and most of the eggs develop the normal body pattern. Temperature shift experiments suggest a temperature-sensitive period at the onset of vitellogenesis.The mutation causes several types of abnormalities in the segment pattern of theDrosophila embryo, which are interpreted as various degrees of expression of the mutant character. The most frequent abnormal phenotype is the symmetrical bicaudal embryo with one to five abdominal segments duplicated. Less frequent are asymmetrical types, in which the smaller number of segments is always in the anterior reversed part. Other phenotypes are embryos with missing or rudimentary heads, and embryos with irregular gaps in the segment pattern. In bicaudal embryos, the pole cells, formed at the posterior pole of the egg prior to blastoderm formation, are not duplicated at the anterior. The significance of thebicaudal phenotypes for embryonic pattern-formation inDrosophila is discussed.  相似文献   

12.
Every cartilage and bone in the vertebrate skeleton has a precise shape and position. The head skeleton develops in the embryo from the neural crest, which emigrates from the neural ectoderm and forms the skull and pharyngeal arches. Recent genetic data from mice and zebrafish suggest that cells in the pharyngeal segments are specified by positional information in at least two dimensions, Hox genes along the anterior-posterior axis and other homeobox genes along the dorsal-ventral axis within a segment. Many zebrafish and human mutant phenotypes indicate that additional genes are required for the development of groups of adjacent pharyngeal arches and for patterning along the mediolateral axis of the skull. The complementary genetic approaches in humans, mice and fish reveal networks of genes that specify the complex morphology of the head skeleton along a relatively simple set of coordinates.  相似文献   

13.
Genetic equilibrium under selection   总被引:3,自引:0,他引:3  
C C Li 《Biometrics》1967,23(3):397-484
  相似文献   

14.
15.
16.
The current status of equine embryo transfer   总被引:1,自引:0,他引:1  
The use of embryo transfer in the horse has increased steadily over the past two decades. However, several unique biological features as well as technical problems have limited its widespread use in the horse as compared with that in the cattle industry. Factors that affect embryo recovery include the day of recovery, number of ovulations, age of the donor and the quality of sire's semen. Generally, embryo recoveries are performed 7 or 8 d after ovulation unless the embryos are to be frozen, in which case recovery is performed 6 d after ovulation. Most embryos are recovered from single-ovulating mares. Because there is no commercially available hormonal preparation for inducing multiple ovulation in the horse, equine pituitary extract has been used to increase the number of ovulations in treated mares, but FSH of ovine or porcine origin is relatively ineffective in inducing multiple ovulation in the mare. Factors shown to affect pregnancy rates after embryo transfer include method of transfer, synchrony of the donor and recipient, embryo quality, and management of the recipient. One of the major improvements in equine embryo transfer over the last several years is the ability to store embryos at 5 degrees C and thus ship them to a centralized station for transfer into recipient mares. Embryos are collected by practitioners on the farm, cooled to 5 degrees C in a passive cooling unit and shipped to an embryo transfer station without a major decrease in fertility. However, progress in developing techniques for freezing equine embryos has been slow. Currently, only small, Day-6 equine embryos can be frozen with reasonable success. Additional studies are needed to refine the techniques for freezing embryos collected from mares 7 or 8 d after ovulation. Demand for the development of assisted reproductive techniques in the horse has increased dramatically. Collection of equine oocytes by transvaginal, ultrasound-guided puncture and the transfer of these oocytes into recipients is now being used to produce pregnancies from donors that had previously been unable to provide embryos. In vitro fertilization, however, has been essentially unsuccessful in the horse. One alternative to in vitro fertilization that has shown promise is intracytoplasmic sperm injection. However, culture conditions for in vitro-produced embryos appear to be inadequate. The continued demand for assisted reproductive technology will likely result in the further development of techniques that are suitable for use in the horse.  相似文献   

17.
Current status of embryo technologies in sheep and goat   总被引:27,自引:0,他引:27  
This review presents an overview of the technical bases of in vivo and in vitro embryo production in sheep and goat. The current limitations of in vivo production, such as variability of response to the hormonal treatment, fertilization failure in females showing a high ovulatory response, and the importance of premature regressed CL in the goat, are described along with possibilities for improvement. The new prospects offered by in vitro embryo production, by repeated ovum pick-up from live females and by juvenile breeding, are presented along with their limiting steps and research priorities. The recent improvements of embryo production and freezing technologies could be used for constitution of flocks without risks of disease transmission and will allow wider propagation of valuable genes in small ruminants populations in the future.  相似文献   

18.
Genetic and phenotypic models of natural selection   总被引:1,自引:0,他引:1  
The following theorem is proposed: when two phenotypes differ in attributes affecting their relative fitness, selection will cease to cause further evolutionary change when the two phenotypes have the same fitness, provided that certain modes of inheritance apply; in particular, all genotypes specifying the same phenotype must have the same average fitness. If these conditions of “uniform fitness” patterns of inheritance are not met, particular genetic models of natural selection should replace an analysis of phenotypes. If the conditions are met, an analysis of the stationary conditions when the phenotypes have equal fitnesses permits quantitative statements about the outcome of selection without recourse to genetic models. Phenotypic analyses of natural selection are illustrated by models of sex ratios in plants, sexual versus asexual reproduction in plants, and parental investment by animals.  相似文献   

19.
Loss-of-function analysis has shown that the transforming growth factor-like signaling molecule nodal is essential for mouse mesoderm development. However, definitive proof of nodal function in other developmental processes in the mouse embryo has been lacking because the null mutation blocks gastrulation. We describe the generation and analysis of a hypomorphic nodal allele. Mouse embryos heterozygous for the hypomorphic allele and a null allele undergo gastrulation but then display abnormalities that fall into three distinct mutant phenotypic classes, which may result from expression levels falling below critical thresholds in one or more domains of nodal expression. Our analysis of each of these classes provides conclusive evidence for nodal-mediated regulation of several developmental processes in the mouse embryo, beyond its role in mesoderm formation. We find that nodal signaling is required for correct positioning of the anteroposterior axis, normal anterior and midline patterning, and the left-right asymmetric development of the heart, vasculature, lungs and stomach.  相似文献   

20.
Genetic control of cell division patterns in the Drosophila embryo   总被引:45,自引:0,他引:45  
B A Edgar  P H O'Farrell 《Cell》1989,57(1):177-187
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号