首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.  相似文献   

2.
For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as l-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production, cannot ferment xylose and arabinose. Although metabolic and evolutionary engineering has enabled the efficient alcoholic fermentation of xylose under anaerobic conditions, the conversion of l-arabinose into ethanol by engineered S. cerevisiae strains has previously been demonstrated only under oxygen-limited conditions. This study reports the first case of fast and efficient anaerobic alcoholic fermentation of l-arabinose by an engineered S. cerevisiae strain. This fermentation was achieved by combining the expression of the structural genes for the l-arabinose utilization pathway of Lactobacillus plantarum, the overexpression of the S. cerevisiae genes encoding the enzymes of the nonoxidative pentose phosphate pathway, and extensive evolutionary engineering. The resulting S. cerevisiae strain exhibited high rates of arabinose consumption (0.70 g h(-1) g [dry weight](-1)) and ethanol production (0.29 g h(-1) g [dry weight](-1)) and a high ethanol yield (0.43 g g(-1)) during anaerobic growth on l-arabinose as the sole carbon source. In addition, efficient ethanol production from sugar mixtures containing glucose and arabinose, which is crucial for application in industrial ethanol production, was achieved.  相似文献   

3.
Nongrowing cells of Streptococcus lactis in a pH-stat were dosed with sugar to allow fermentation at the maximum rate or were fed a continuous supply of sugar at rates less than the maximum. Under anaerobic conditions, rapid fermentation of either glucose or lactose was essentially homolactic. However, with strain ML3, limiting the fermentation rate diverted approximately half of the pyruvate to formate, acetate, and ethanol. At limiting glucose fermentation rates, cells contained lower concentrations of lactate dehydrogenase activator (fructose 1,6-diphosphate) and pyruvate formate-lyase inhibitors (triose phosphates). As a result, pyruvate formate-lyase and pyruvate dehydrogenase play a greater role in pyruvate metabolism. In contrast to strain ML3, strain ML8 did not give the same diversion of products under anaerobic conditions, and cells retained higher concentrations of the above effector compounds. Lactose metabolism under aerobic conditions resulted in pyruvate excretion by both S. lactis ML3 and ML8. At 7% of the maximum utilization rate, pyruvate accounted for 69 and 35% of the lactose metabolized by ML3 and ML8, respectively. Acetate was also a major product, especially with ML8. The data suggest that NADH oxidase is involved in coenzyme recycling in the presence of oxygen and that pyruvate formate-lyase is inactivated, but the pyruvate dehydrogenase complex still functions.  相似文献   

4.
Nongrowing cells of Streptococcus lactis in a pH-stat were dosed with sugar to allow fermentation at the maximum rate or were fed a continuous supply of sugar at rates less than the maximum. Under anaerobic conditions, rapid fermentation of either glucose or lactose was essentially homolactic. However, with strain ML3, limiting the fermentation rate diverted approximately half of the pyruvate to formate, acetate, and ethanol. At limiting glucose fermentation rates, cells contained lower concentrations of lactate dehydrogenase activator (fructose 1,6-diphosphate) and pyruvate formate-lyase inhibitors (triose phosphates). As a result, pyruvate formate-lyase and pyruvate dehydrogenase play a greater role in pyruvate metabolism. In contrast to strain ML3, strain ML8 did not give the same diversion of products under anaerobic conditions, and cells retained higher concentrations of the above effector compounds. Lactose metabolism under aerobic conditions resulted in pyruvate excretion by both S. lactis ML3 and ML8. At 7% of the maximum utilization rate, pyruvate accounted for 69 and 35% of the lactose metabolized by ML3 and ML8, respectively. Acetate was also a major product, especially with ML8. The data suggest that NADH oxidase is involved in coenzyme recycling in the presence of oxygen and that pyruvate formate-lyase is inactivated, but the pyruvate dehydrogenase complex still functions.  相似文献   

5.
Metabolic engineering is a powerful method to improve, redirect, or generate new metabolic reactions or whole pathways in microorganisms. Here we describe the engineering of a Saccharomyces cerevisiae strain able to utilize the pentose sugar L-arabinose for growth and to ferment it to ethanol. Expanding the substrate fermentation range of S. cerevisiae to include pentoses is important for the utilization of this yeast in economically feasible biomass-to-ethanol fermentation processes. After overexpression of a bacterial L-arabinose utilization pathway consisting of Bacillus subtilis AraA and Escherichia coli AraB and AraD and simultaneous overexpression of the L-arabinose-transporting yeast galactose permease, we were able to select an L-arabinose-utilizing yeast strain by sequential transfer in L-arabinose media. Molecular analysis of this strain, including DNA microarrays, revealed that the crucial prerequisite for efficient utilization of L-arabinose is a lowered activity of L-ribulokinase. Moreover, high L-arabinose uptake rates and enhanced transaldolase activities favor utilization of L-arabinose. With a doubling time of about 7.9 h in a medium with L-arabinose as the sole carbon source, an ethanol production rate of 0.06 to 0.08 g of ethanol per g (dry weight). h(-1) under oxygen-limiting conditions, and high ethanol yields, this yeast strain should be useful for efficient fermentation of hexoses and pentoses in cellulosic biomass hydrolysates.  相似文献   

6.
7.
Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3.0. In aerobic, glucose-grown cultures, Z. bailii exhibited aerobic alcoholic fermentation similar to that of Saccharomyces cerevisiae and other Crabtree-positive yeasts. In anaerobic fermentor cultures grown on a synthetic medium supplemented with glucose, Tween 80, and ergosterol, S. cerevisiae exhibited rapid exponential growth. Growth of Z. bailii under these conditions was extremely slow and linear. These linear growth kinetics indicate that cell proliferation of Z. bailii in the anaerobic fermentors was limited by a constant, low rate of oxygen leakage into the system. Similar results were obtained with the facultatively fermentative yeast Candida utilis. When the same experimental setup was used for anaerobic cultivation, in complex YPD medium, Z. bailii exhibited exponential growth and vigorous fermentation, indicating that a nutritional requirement for anaerobic growth was met by complex-medium components. Our results demonstrate that restriction of oxygen entry into foods and beverages, which are rich in nutrients, is not a promising strategy for preventing growth and gas formation by Z. bailii. In contrast to the growth of Z. bailii, anaerobic growth of S. cerevisiae on complex YPD medium was much slower than growth in synthetic medium, which probably reflected the superior tolerance of the former yeast to organic acids at low pH.  相似文献   

8.
Twelve lactose-assimilating strains of the yeast species Kluyveromyces marxianus and its varieties marxianus, lactis and bulgaricus were studied with respect to transport mechanisms for lactose, glucose and galactose, fermentation of these sugars and the occurrence of extracellular lactose hydrolysis. The strains fell into three groups. Group I (two strains): Fermentation of lactose, glucose and galactose, extracellular lactose hydrolysis, apparent facilitated diffusion of glucose and galactose; Group II (two strains): Lactose not fermented, glucose and galactose fermented and transported by an apparent proton symport, extracellular hydrolysis of lactose present (one strain) or questionable; Group III (eight strains): Lactose, glucose and galactose fermented, lactose transported by an apparent proton symport mechanism, extracellular hydrolysis of lactose and transport modes for glucose and galactose variable.  相似文献   

9.
Resting cells of Fusobacterium nucleatum 10953 (grown previously in a medium containing glucose) failed to accumulate glucose under aerobic or anaerobic conditions. However, the addition of glutamic acid, lysine, or histidine to anaerobic suspensions of cells caused the immediate and rapid accumulation of glucose. Except for the amino acid-dependent transport of galactose and fructose (the latter being transported at approximately one-third the rate of glucose), no other sugars tested were accumulated by the resting cells. Amino acid-dependent uptake of sugar(s) by F. nucleatum was abolished by exposure of cells to air, and under aerobic conditions the rates of fermentation of glutamic acid and lysine were less than 15% of the rates determined anaerobically. The energy necessary for active transport of the sugars (acetyl phosphate and ATP) is derived from the anaerobic fermentation of glutamic acid, lysine, or histidine. Competition studies revealed that glucose and galactose were mutual and exclusive inhibitors of transport, and it is suggested that the two sugars (Km = 14 microM) are translocated via a common carrier. The products of amino acid-dependent sugar transport were recovered from resting cells as ethanol-precipitable, high-molecular-weight polymers. Polymer formation by F. nucleatum, during growth in medium containing glucose or galactose, was confirmed by electron microscopy.  相似文献   

10.
The acid hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol sulfuric acid per liter pyrolysate using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol in 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol in 18 h. The results showed that the acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by S. cerevisiae (R) in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

11.
Beet molasses is widely used as a growth substrate for bakers' and distillers' yeast in the production of biomass and ethanol. Most commercial yeasts do not fully utilise the carbohydrates in molasses since they are incapable of hydrolysing the disaccharide melibiose to glucose and galactose. Also, expression of genes encoding enzymes for the utilisation of carbon sources that are alternatives to glucose is tightly regulated, sometimes rates of yeast growth and/or ethanol production. The GAL genes are regulated by specific induction by galactose and repression during growth on glucose. In an industrial distillers' yeast, two genes interacting synergistically in glucose repression of galactose utilization, MIG1 and GAL80, have been disrupted with MEL1, encoding melibiase. The physiology of the wild-type strain and the recombinant strains was investigated on mixtures of glucose and galactose and on molasses. The recombinant strain started to ferment galactose when 9.7 g 1(-1) glucose was still present during a batch fermentation, whereas the wild-type strain did not consume any galactose in the presence of glucose. The ethanol yield in the recombinant strain was 0.50 g ethanol g sugar (-1) in an ethanol fermentation on molasses, compared with 0.48 g ethanol g sugar (-1) for the wild-type strain. The increased ethanol yield was due to utilization of melibiose in the molasses.  相似文献   

12.
From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).  相似文献   

13.
Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast traditionally used in ethanol production from hexose. However, recombinant S. cerevisiae created in several laboratories have used xylose oxidatively rather than in the fermentative manner that this yeast metabolizes glucose. To understand the differences between glucose and engineered xylose metabolic networks, we performed a flux balance analysis (FBA) and calculated extreme pathways using a stoichiometric model that describes the biochemistry of yeast cell growth. FBA predicted that the ethanol yield from xylose exhibits a maximum under oxygen-limited conditions, and a fermentation experiment confirmed this finding. Fermentation results were largely consistent with in silico phenotypes based on calculated extreme pathways, which displayed several phases of metabolic phenotype with respect to oxygen availability from anaerobic to aerobic conditions. However, in contrast to the model prediction, xylitol production continued even after the optimum aeration level for ethanol production was attained. These results suggest that oxygen (or some other electron accepting system) is required to resolve the redox imbalance caused by cofactor difference between xylose reductase and xylitol dehydrogenase, and that other factors limit glycolytic flux when xylose is the sole carbon source.  相似文献   

14.
From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).  相似文献   

15.
The ability of a recombinant Saccharomyces yeast strain to ferment the sugars glucose, xylose, arabinose and galactose which are the predominant monosaccharides found in corn fibre hydrolysates has been examined. Saccharomyces strain 1400 (pLNH32) was genetically engineered to ferment xylose by expressing genes encoding a xylose reductase, a xylitol dehydrogenase and a xylulose kinase. The recombinant efficiently fermented xylose alone or in the presence of glucose. Xylose-grown cultures had very little difference in xylitol accumulation, with only 4 to 5g/l accumulating, in aerobic, micro-aerated and anaerobic conditions. Highest production of ethanol with all sugars was achieved under anaerobic conditions. From a mixture of glucose (80g/l) and xylose (40g/l), this strain produced 52g/l ethanol, equivalent to 85% of theoretical yield, in less than 24h. Using a mixture of glucose (31g/l), xylose (15.2g/l), arabinose (10.5g/l) and galactose (2g/l), all of the sugars except arabinose were consumed in 24h with an accumulation of 22g ethanol/l, a 90% yield (excluding the arabinose in the calculation since it is not fermented). Approximately 98% theoretical yield, or 21g ethanol/l, was achieved using an enzymatic hydrolysate of ammonia fibre exploded corn fibre containing an estimated 47.0g mixed sugars/l. In all mixed sugar fermentations, less than 25% arabinose was consumed and converted into arabitol.  相似文献   

16.
Permeabilized cells of Kluyveromyces marxianus CCY eSY2 were tested as the source of lactase in the ethanol fermentation of concentrated deproteinized whey (65–70 g/l lactose) by Saccharomyces cerevisiae CCY 10–13–14. Rapid lactose hydrolysis by small amounts of permeabilized cells following the fermentation of released glucose and galactose by S. cerevisiae resulted in a twofold enhancement of the overall volumetric productivity (1.03 g/l × h), compared to the fermentation in which the lactose was directly fermented by K. marxianus.  相似文献   

17.
1. The effect of aeration on the key enzymes of gluconeogenesis was studied in baker's yeast (Saccharomyces cerevisiae) and in a nonrespiratory variant of S. cerevisiae grown under glucose limitation. 2. In baker's yeast phosphoenolpyruvate carboxykinase, hexosediphophatase and isocitrate lyase were completely repressed under anaerobic conditions. Their repression could be partially reversed by using intense aeration. 3. In the nonrespiratory variant these enzymes were absent independently of aeration. 4. Pyruvate carboxylase of baker's yeast showed maximal activity under anaerobic conditions. In the nonrespiratory variant pyruvate carboxylase had low activity under both anaerobic and aerobic conditions.  相似文献   

18.
【目的】提高酿酒酵母的高耐温性,从而提高菌株在高温下的乙醇发酵性能。【方法】利用染色体整合过表达酿酒酵母液泡蛋白酶B编码基因PRB1。【结果】在41 °C高温条件下进行乙醇发酵,过表达PRB1基因的重组酿酒酵母菌株可在31 h内消耗全部的葡萄糖,而对照菌株在相同时间内仅消耗不到一半的葡萄糖。【结论】利用蛋白酶B基因过表达可构建耐高温酿酒酵母菌株,提高在高温条件下乙醇的发酵效率。  相似文献   

19.
A wild-type yeast strain with a good galactose-utilization efficiency was newly isolated from the soil, and identified and named Saccharomyces cerevisiae KL17 by 18s RNA sequencing. Its performance of producing ethanol from galactose was investigated in flask cultures with media containing various combination and concentrations of galactose and glucose. When the initial galactose concentration was 20 g/L, it showed 2.2 g/L/h of substrate consumption rate and 0.63 g/L/h of ethanol productivity. Although they were about 70 % of those with glucose, such performance of S. cerevisiae KL17 with galactose was considered to be quite high compared with other strains reported to date. Its additional merit was that its galactose metabolism was not repressed by the existence of glucose. Its capability of ethanol production under a high ethanol concentration was demonstrated by fed-batch fermentation in a bioreactor. A high ethanol productivity of 3.03 g/L/h was obtained with an ethanol concentration and yield of 95 and 0.39 g/L, respectively, when the cells were pre-cultured on glucose. When the cells were pre-cultured on galactose instead of glucose, fermentation time could be reduced significantly, resulting in an improved ethanol productivity of 3.46 g/L/h. The inhibitory effects of two major impurities in a crude galactose solution obtained from acid hydrolysis of galactan were assessed. Only 5-Hydroxymethylfurfural (5-HMF) significantly inhibited ethanol fermentation, while levulinic acid (LA) was benign in the range up to 10 g/L.  相似文献   

20.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号