首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most severe illnesses that are attributed to Shiga toxin-producing Escherichia coli are caused by isolates that also carry a pathogenicity island called the locus of enterocyte effacement (LEE). However, many cases of severe disease are associated with LEE-negative strains. We characterized the virulence gene content and the evolutionary relationships of Escherichia coli isolates of serogroup O174 (formerly OX3), strains of which have been implicated in cases of hemorrhagic colitis and hemolytic uremic syndrome. A total of 56 isolates from humans, farm animals, and food were subjected to multilocus virulence gene profiling (MVGP), and a subset of 16 isolates was subjected to multilocus sequence analysis (MLSA). The MLSA revealed that the O174 isolates fall into four separate evolutionary clusters within the E. coli phylogeny and are related to a diverse array of clonal groups, including enteropathogenic E. coli 2 (EPEC 2), enterohemorrhagic E. coli 2 (EHEC 2), and EHEC-O121. Of the 15 genes that we surveyed with MVGP, only 6 are common in the O174 strains. The different clonal groups within the O174 serogroup appear to have independently acquired and maintained similar sets of genes that include the Shiga toxins (stx1 and stx2) and two adhesins (saa and iha). The absence of certain O island (OI) genes, such as those found on OI-122, is consistent with the notion that certain pathogenicity islands act cooperatively with the LEE island.  相似文献   

2.
The genomic island encoding the locus of enterocyte effacement (LEE) is an important virulence factor of the human pathogenic Escherichia coli. LEE typically encodes a type III secretion system (T3SS) and secreted effectors capable of forming attaching and effacing lesions. Although prominent in the pathogenic E. coli such as serotype O157:H7, LEE has also been detected in Citrobacter rodentium, E. albertii, and although not confirmed, it is likely to also be in Shigella boydii. Previous phylogenetic analysis of LEE indicated the genomic island was evolving through stepwise acquisition of various components. This study describes a new LEE region from two strains of Salmonella enterica subspecies salamae serovar Sofia along with a phylogenetic analysis of LEE that provides new insights into the likely evolution of this genomic island. The Salmonella LEE contains 36 of the 41 genes typically observed in LEE within a genomic island of 49, 371 bp that encodes a total of 54 genes. A phylogenetic analysis was performed on the entire T3SS and four T3SS genes (escF, escJ, escN, and escV) to elucidate the genealogy of LEE. Phylogenetic analysis inferred that the previously known LEE islands are members of a single lineage distinct from the new Salmonella LEE lineage. The previously known lineage of LEE diverged between islands found in Citrobacter and those in Escherichia and Shigella. Although recombination and horizontal gene transfer are important factors in the genealogy of most genomic islands, the phylogeny of the T3SS of LEE can be interpreted with a bifurcating tree. It seems likely that the LEE island entered the Enterobacteriaceae through horizontal gene transfer as a single unit, rather than as separate subsections, which was then subjected to the forces of both mutational change and recombination.  相似文献   

3.
Shiga toxin-producing Escherichia coli (STEC) strains are commensal bacteria in cattle with high potential for environmental and zoonotic transmission to humans. Although O157:H7 is the most common STEC serotype, there is growing concern over the emergence of more than 200 highly virulent non-O157 STEC serotypes that are globally distributed, several of which are associated with outbreaks and/or severe human illness such as hemolytic-uremic syndrome (HUS) and hemorrhagic colitis. At present, the underlying genetic basis of virulence potential in non-O157 STEC is unknown, although horizontal gene transfer and the acquisition of new pathogenicity islands are an expected origin. We used seropathotype classification as a framework to identify genetic elements that distinguish non-O157 STEC strains posing a serious risk to humans from STEC strains that are not associated with severe and epidemic disease. We report the identification of three genomic islands encoding non-LEE effector (nle) genes and 14 individual nle genes in non-O157 STEC strains that correlate independently with outbreak and HUS potential in humans. The implications for transmissible zoonotic spread and public health are discussed. These results and methods offer a molecular risk assessment strategy to rapidly recognize and respond to non-O157 STEC strains from environmental and animal sources that might pose serious public health risks to humans.  相似文献   

4.
Necrotic enteritis (NE) is an economically important disease of poultry caused by certain Clostridium perfringens type A strains. NE pathogenesis involves the NetB toxin, which is encoded on a large conjugative plasmid within a 42-kb pathogenicity locus. Recent multilocus sequence type (MLST) studies have identified two predominant NE-associated clonal groups, suggesting that host genes are also involved in NE pathogenesis. We used microarray comparative genomic hybridization (CGH) to assess the gene content of 54 poultry isolates from birds that were healthy or that suffered from NE. A total of 400 genes were variably present among the poultry isolates and nine nonpoultry strains, many of which had putative functions related to nutrient uptake and metabolism and cell wall and capsule biosynthesis. The variable genes were organized into 142 genomic regions, 49 of which contained genes significantly associated with netB-positive isolates. These regions included three previously identified NE-associated loci as well as several apparent fitness-related loci, such as a carbohydrate ABC transporter, a ferric-iron siderophore uptake system, and an adhesion locus. Additional loci were related to plasmid maintenance. Cluster analysis of the CGH data grouped all of the netB-positive poultry isolates into two major groups, separated according to two prevalent clonal groups based on MLST analysis. This study identifies chromosomal loci associated with netB-positive poultry strains, suggesting that the chromosomal background can confer a selective advantage to NE-causing strains, possibly through mechanisms involving iron acquisition, carbohydrate metabolism, and plasmid maintenance.  相似文献   

5.
Infections with verotoxin-producing Escherichia coli (VTEC) has resulted in increasing numbers of human illnesses annually. These illnesses usually result from the ability of VTEC to cause the attaching and effacing lesions (AE lesion). The AE phenotype is encoded by the locus of enterocyte effacement (LEE) pathogenicity island. A key adhesion factor involved is the outer membrane protein intimin, encoded by the eae gene within the LEE. Intimin types alpha, beta, gamma, delta, and epsilon have been described previously. Each intimin represents distinct phylogenetic lineages of LEE-positive strains. A new intimin type zeta was identified in a VTEC strain of the serotype O84:NM (nonmotile) that was isolated from a calf with diarrhea. zeta intimin showed the highest similarity (88%) of its amino acid sequence to the alpha intimin. For diagnostic purposes, we established a polymerase chain reaction (PCR) method for diagnosis of the key virulence traits of VTEC (i.e., verotoxins and intimins). This method also distinguishes between the toxins (VT1 and VT2) and the six intimin types. By applying the PCR method, intimin zeta in strains of other VTEC serotypes O84:H2, O92:NM, O119:H25, and O150:NM was identified. Because the intimin types represent distinctive phylogenetic E. coli lineages, application of the intimin subtyping PCR offers significant benefits. These include improving diagnosis of VTEC infection and increasing the understanding of evolution of attaching and effacing VTEC and other LEE-positive bacteria.  相似文献   

6.
In the present study, we investigated the gene distribution among strains of the highly polymorphic plant pathogenic beta-proteobacterium Ralstonia solanacearum, paying particular attention to the status of known or candidate pathogenicity genes. Based on the use of comparative genomic hybridization on a pangenomic microarray for the GMI1000 reference strain, we have defined the conditions that allowed comparison of the repertoires of genes among a collection of 18 strains that are representative of the biodiversity of the R. solanacearum species. This identified a list of 2,690 core genes present in all tested strains. As a corollary, a list of 2,338 variable genes within the R. solanacearum species has been defined. The hierarchical clustering based on the distribution of variable genes is fully consistent with the phylotype classification that was previously defined from the nucleotide sequence analysis of four genes. The presence of numerous pathogenicity-related genes in the core genome indicates that R. solanacearum is an ancestral pathogen. The results establish the long coevolution of the two replicons that constitute the bacterial genome. We also demonstrate the clustering of variable genes in genomic islands. Most genomic islands are included in regions with an alternative codon usage, suggesting that they originate from acquisition of foreign genes through lateral gene transfers. Other genomic islands correspond to genes that have the same base composition as core genes, suggesting that they either might be ancestral genes lost by deletion in certain strains or might originate from horizontal gene transfers.  相似文献   

7.
Enterohemorrhagic Escherichia coli (EHEC) strains of serogroup O26 cause hemolytic-uremic syndrome (HUS) whereas atypical enteropathogenic E. coli (aEPEC) O26 typically cause uncomplicated diarrhea but have been also isolated from HUS patients. To gain insight into the virulence of aEPEC O26, we compared the presence of O island (OI) 122, which is associated with enhanced virulence in EHEC strains, among aEPEC O26 and EHEC O26 clinical isolates. We also tested these strains for the high pathogenicity island (HPI) which is a fitness island. All 20 aEPEC O26 and 20 EHEC O26 investigated contained virulence genes located within OI-122 (efa1/lifA, nleB, nleE, ent). In both aEPEC O26 and EHEC O26, OI-122 was linked to the locus for enterocyte effacement, forming a mosaic island which was integrated in pheU. Moreover, strains of these two pathotypes shared a conserved HPI. These data support a close relatedness between aEPEC O26 and EHEC O26 and have evolutionary implications. The presence of OI-122 in aEPEC O26 might contribute to their pathogenic potential.  相似文献   

8.
O island 48 (OI-48) of Escherichia coli consists of three functional gene clusters that encode urease, tellurite resistance (Ter), and putative adhesins Iha and AIDA-1. The functions of these clusters in enterohemorrhagic E. coli (EHEC) O157:H7 infection are unknown. Deletion mutants for these three regions were constructed and evaluated for their ability to adhere to epithelial cells in vitro and in ligated pig ileal loops. Deletion of the Ter gene cluster reduced the ability of the organism to adhere to and form large clusters on IPEC-J2 and HEp-2 cells. Complementation of the mutation by introducing the wild-type ter genes restored adherence and large-cluster formation. Tests in ligated pig ileal loops showed a decrease in colonization by the Ter-negative mutant, but the difference was not significant compared to colonization by the wild type (26.4% ± 21.2% versus 40.1% ± 19.1%; P = 0.168). The OI-48 aidA gene deletion had no effect on adherence in vitro or in vivo. Deletion of the iha and ureC genes had no effect on adherence in vitro but significantly reduced the colonization of EHEC O157:H7 in the ligated pig intestine. These data suggest that Ter, Iha, and urease may contribute to EHEC O157:H7 pathogenesis by promoting adherence of the pathogen to the host intestinal epithelium.The genome of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain EDL933 contains unique blocks of sequences called O islands (OIs), which are absent from the E. coli K12 MG1655 genome. The OIs contain 1,387 genes, some of which encode virulence factors (21), thus making these OIs pathogenicity islands (PAIs). EHEC pathogenicity is mainly determined by factors encoded in these PAIs, such as OI-148 (locus of enterocyte effacement [LEE] PAI) which causes attaching and effacing (AE) lesions, and OI-45 and OI-93, which contain lambdoid phages encoding verotoxins that are required for bloody diarrhea and the hemolytic uremic syndrome. However, only 40% of the OI genes in O157:H7 strain EDL933 have been assigned a function.OI-43 and OI-48 are duplicates, encoding tellurite resistance (Ter) and the putative adhesin Iha and are therefore called Ter- and adherence-conferring islands (TAIs) (28). EHEC O157:H7 strain EDL933 contains both OI-43 and OI-48, while the Sakai strain contains only one of these OIs. We used PCR with OI junction primers to show that O157:H7 strain 86-24 contains only OI-48, not OI-43 (data not shown). The TAI can be divided into three functional gene clusters, one encoding urease, a second encoding Ter, and the third encoding the putative adhesins Iha and AIDA-1 (Fig. (Fig.1)1) (21, 28). The urease genes are similar to the genes in Klebsiella aerogenes (9) while the Ter gene cluster is similar to the genes in Serratia marcesens (28). The pattern of homology indicates that the TAI is a mosaic of functional regions that were acquired on separate occasions (1). Iha is an IrgA (iron-regulated gene A) homolog adhesin (25). Because of its presence in eae (E. coli AE)-negative verotoxigenic E. coli (VTEC) strains, it has been suggested that Iha may function as an adhesin in these organisms in place of intimin (23, 25). AIDA-I, encoded by aidA, is an autotransporter membrane protein with a β-barrel structure, and it confers on enteropathogenic E. coli the ability to diffusely adhere to epithelial cells. The AIDA-I adhesin from OI-48 has 68% homology to the AIDA-I of enteropathogenic E. coli (20, 21). However, the roles of Iha and AIDA-I-like adhesins in EHEC pathogenesis have yet to be determined.Open in a separate windowFIG. 1.Schematic representation of the three functional regions of OI-48 of EHEC O157:H7 strain EDL933. The island is 87,547 bp, with 92 open reading frames; only genes of interest are shown. The sections in the four mutants that were deleted are shaded, and the sizes of the deletions are shown.The ure gene cluster consists of three structural genes, ureA, ureB, and ureC, and four accessory genes, ureD, ureE, ureF, and ureG, required for transport and processing of urease (5, 15). Interestingly, ure genes are more frequently present in eae-positive VTEC strains (113 of 132, or 85.6%) than in eae-negative VTEC strains (4 of 70, or 5.7%) although there is no physical linkage of the ure gene and eae, which is present on the LEE (17). These observations suggest that there may be a functional relationship between the ure and LEE genes (17).Ter imparts resistance against tellurium in bacteria; however, tellurium is rare in nature, and the advantage of Ter to pathogenic bacteria is not understood. The Ter genes have been extensively studied in plasmids pMER610 and R478 and appear to confer phage inhibition, resistance to bacteriophage (such as λ and T5) infection, and pore-forming colicins (27). Tellurite salts are strong oxidative agents, and it is possible that Ter confers a selective advantage in the host environment by aiding the bacteria in a general stress response. Introduction of Ter into nonpathogenic or uropathogenic E. coli (UPEC) results in a significant increase in their survival inside macrophages (29). Ter in EHEC strain EDL933 is encoded by terZABCDEF located in OI-48 and OI-43, and questions have been asked as to whether the operon that encodes Ter in EHEC O157 provides a selective advantage to this pathogen and, if so, how it is associated with bacterial pathogenesis.To investigate the roles of the putative OI-48 virulence determinants in the pathogenesis of EHEC O157:H7, deletion mutants of the three functional regions of OI-48 were constructed and evaluated for adherence to tissue culture cells and to enterocytes in pig ileal loops.  相似文献   

9.
Rapid and specific detection of Shiga toxin-producing Escherichia coli (STEC) strains with a high level of virulence for humans has become a priority for public health authorities. This study reports on the development of a low-density macroarray for simultaneously testing the genes stx1, stx2, eae, and ehxA and six different nle genes issued from genomic islands OI-122 (ent, nleB, and nleE) and OI-71 (nleF, nleH1-2, and nleA). Various strains of E. coli isolated from the environment, food, animals, and healthy children have been compared with clinical isolates of various seropathotypes. The eae gene was detected in all enteropathogenic E. coli (EPEC) strains as well as in enterohemorrhagic E. coli (EHEC) strains, except in EHEC O91:H21 and EHEC O113:H21. The gene ehxA was more prevalent in EHEC (90%) than in STEC (42.66%) strains, in which it was unequally distributed. The nle genes were detected only in some EPEC and EHEC strains but with various distributions, showing that nle genes are strain and/or serotype specific, probably reflecting adaptation of the strains to different hosts or environmental niches. One characteristic nle gene distribution in EHEC O157:[H7], O111:[H8], O26:[H11], O103:H25, O118:[H16], O121:[H19], O5:H−, O55:H7, O123:H11, O172:H25, and O165:H25 was ent/espL2, nleB, nleE, nleF, nleH1-2, nleA. (Brackets indicate genotyping of the flic or rfb genes.) A second nle pattern (ent/espL2, nleB, nleE, nleH1-2) was characteristic of EHEC O103:H2, O145:[H28], O45:H2, and O15:H2. The presence of eae, ent/espL2, nleB, nleE, and nleH1-2 genes is a clear signature of STEC strains with high virulence for humans.Since the early 1980s, Shiga toxin-producing Escherichia coli (STEC) has emerged as a major cause of food-borne infections (17, 30). STEC can cause diarrhea in humans, and some STEC strains may cause life-threatening diseases, such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). On the basis of its human pathogenicity, this subset of STEC strains was also designated enterohemorrhagic E. coli (EHEC) (22, 25). Numerous cases of HC and HUS have been attributed to EHEC serotype O157:H7 strains, but it has now been recognized that other serotypes of STEC belong to the EHEC group. The STEC seropathotype classification is based upon the serotype association with human epidemics, HUS, and diarrhea and has been developed as a tool to assess the clinical and public health risks associated with non-O157 EHEC and STEC strains (18). Only a few serotypes of STEC have been reported as most frequently associated with severe disease in humans. Besides E. coli O157:[H7], five other serotypes, namely O26:[H11], O103:H2, O111:[H8], O121:[H19], and O145:[H28], account for the group of typical EHEC (25). (Brackets indicate genotyping of the flic or rfb genes; the absence of brackets indicates data obtained with the conventional serotyping approach using specific antisera, as described in Materials and Methods.) Atypical EHEC group strains of serotypes O91:[H21], O113:H21, and O104:H21 are less frequently involved in hemorrhagic diseases than typical EHEC but are a frequent cause of diarrhea (8, 12, 25). Recent data from Enter-Net, a global surveillance consortium of 35 countries that tracks enteric infectious diseases, showed that the number of human cases of illness caused by non-O157 EHEC increased globally by 60.5% between 2000 and 2005, while at the same time the number of cases linked to EHEC O157 increased by only 13% (1). In the past few years, new serotypes of EHEC that differ from those previously known as typical and atypical EHEC have emerged (6, 8, 23, 24, 31). These EHEC strains were identified as important causes of food-borne infections in humans and were described as “new emerging EHEC.”The production of Shiga toxin (Stx) by EHEC is the primary virulence trait responsible for HUS, but many E. coli non-O157:H7 strains that produce Stx do not cause HUS. Identification of human-virulent STEC by detection of unique stx genes may be misleading, since not all STEC strains are clinically significant for humans (11). Besides the ability to produce one or more types of Shiga toxins, typical EHEC strains harbor a genomic island called the “locus of enterocyte effacement” (LEE). Atypical EHEC strains are negative for the LEE but may carry other factors for colonization of the human intestine (6, 25). The LEE carries genes encoding functions for bacterial colonization of the gut and for destruction of the intestinal mucosa, thus contributing to the disease process (25). The LEE eae gene product intimin is directly involved in the attaching and effacing (A/E) process (37). The LEE includes regulatory elements, a type III secretion system (TTSS), secreted effector proteins, and their cognate chaperon (13, 29). In addition to the intimin, most of the typical EHEC strains harbor the plasmid-borne enterohemolysin (ehxA), which is considered an associated virulence factor (6, 25).A number of other pathogenicity island (PAI) candidates, including O island 122 (OI-122) and O island 71 (OI-71), have been found in EHEC and EPEC strains, but their role in disease is not fully clear. Within the EHEC group, both O157:H7 strains (19, 34) and non-O157 strains (18, 35) present a variable repertoire of virulence determinants, including a collection of non-LEE-encoded effector (nle) genes that encode translocated substrates of the type III secretion system (9, 20). Our objective was to identify type III secreted virulence factors that distinguish EHEC O157 and non-O157 strains constituting a severe risk for human health from STEC strains that are not associated with severe and epidemic disease, a concept called “molecular risk assessment” (MRA) by Coombes et al. (9). Supporting the MRA approach requires the development of diagnostic tests based on multiplex nucleic acid amplification and microfluidics-based detection using standardized platforms applicable in hospital service or public health laboratories. It is now feasible to develop low-density DNA arrays that can be used to examine the gene inventory from isolated strains, offering a genetic bar coding strategy. A recent innovation in this field is the introduction of the GeneSystems PCR technology (5, 36). In this study, we have developed a GeneDisc array designed for simultaneous detection of genes encoding Shiga toxins 1 and 2 (stx1 and stx2), intimins (eae), enterohemolysin (ehxA), and six different nle genes derived from genomic islands OI-71 and OI-122. We focused our efforts on the detection of the OI-122 genes, ent/espL2 (Z4326), nleB (Z4328), and nleE (Z4329), and the OI-71 genes, nleF (Z6020), nleH1-2 (Z6021), and nleA (Z6024). The macroarray presented here was evaluated for its specificity and ability to discriminate between STEC causing serious illness in humans and other E. coli strains.  相似文献   

10.
The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus.  相似文献   

11.
If the acquisition of virulence genes (VGs) for pathogenicity were not solely acquired through horizontal gene transfers of pathogenicity islands, transposons, and phages, then clonal clusters of enterotoxigenic Escherichia coli (ETEC) would contain few or even none of the VGs found in strains responsible for extraintestinal infections. To evaluate this possibility, 47 postweaning diarrhea (PWD) ETEC strains from different geographical origins and 158 commensal E. coli isolates from the gastrointestinal tracts of eight group-housed healthy pigs were screened for 36 extraintestinal and 18 enteric VGs using multiplex PCR assays. Of 36 extraintestinal VGs, only 8 were detected (fimH, traT, fyuA, hlyA, kpsMtII, k5, iha, and ompT) in the ETEC collection. Among these, hlyA (alpha-hemolysin) and iha (nonhemagglutinating adhesin) occurred significantly more frequently among the ETEC isolates than in the commensal isolates. Clustering analysis based on the VG profiles separated commensal and ETEC isolates and even differentiated serogroup O141 from O149. On the other hand, pulsed-field gel electrophoresis (PFGE) successfully clustered ETEC isolates according to both serotype and geographical origin. In contrast, the commensal isolates were heterogeneous with respect to both serotype and DNA fingerprint. This study has validated the use of VG profiling to examine pathogenic relationships between porcine ETEC isolates. The clonal relationships of these isolates can be further clarified by PFGE fingerprinting. The presence of extraintestinal VGs in porcine ETEC confirmed the hypothesis that individual virulence gene acquisitions can occur concurrently against a background of horizontal gene transfers of pathogenicity islands. Over time, this could enable specific clonotypes to respond to host selection pressure and to evolve into new strains with increased virulence.  相似文献   

12.
Intestinal pathogenic Escherichia coli are a major cause of worldwide morbidity and mortality. Currently seven intestinal pathovars are recognized causing a wide range of intestinal disorders that are sometimes associated with severe and even lethal complications. The arsenal of virulence factors is used to subvert cellular functions of the host thereby enhancing adaptation, virulence and pathogenicity. Virulence factor profiles are largely the result of the acquisition of mobile genetic elements such as prophages and pathogenicity islands. A group of highly adapted intestinal pathogenic E. coli that are characterized by the induction of ‘attaching‐and‐effacing (A/E) lesions’ have acquired a decisive pathogenicity island, the ‘locus of enterocyte effacement – LEE’ by horizontal gene transfer. This review focuses on recent advances in our understanding of A/E E. coli. It highlights novel functions of effector proteins, addresses the LEE flanking regions where additional genetic elements such as the LifA/Efa1 region have been identified, and points to implications for diagnostics and therapy due to the putative interconversion of A/E E. coli during infection.  相似文献   

13.
Enteropathogenic Escherichia coli (EPEC) infections are a leading cause of infantile diarrhea in developing nations. Typical EPEC isolates are differentiated from other types of pathogenic E. coli by two distinctive phenotypes, attaching effacement and localized adherence. The genes specifying these phenotypes are found on the locus of enterocyte effacement (LEE) and the EPEC adherence factor (EAF) plasmid. To describe how typical EPEC has evolved, we characterized a diverse collection of strains by multilocus sequence typing (MLST) and performed restriction fragment length polymorphism (RFLP) analysis of three virulence genes (eae, bfpA, and perA) to assess allelic variation. Among 129 strains representing 20 O-serogroups, 21 clonal genotypes were identified using MLST. RFLP analysis resolved nine eae, nine bfpA, and four perA alleles. Each bfpA allele was associated with only one perA allele class, suggesting that recombination has not played a large role in shuffling the bfpA and perA loci between separate EAF plasmids. The distribution of eae alleles among typical EPEC strains is more concordant with the clonal relationships than the distribution of the EAF plasmid types. These results provide further support for the hypothesis that the EPEC pathotype has evolved multiple times within E. coli through separate acquisitions of the LEE island and EAF plasmid.  相似文献   

14.
15.
This study investigated variations in the occurrence of markers of O islands 122 and 43/48 and in verotoxin 1 production in 91 verotoxin-producing Escherichia coli (VTEC) O103:H2 strains of bovine and human origins. None of the genes that were investigated appear to be virulence indicators for human O103:H2 VTEC.  相似文献   

16.
If the acquisition of virulence genes (VGs) for pathogenicity were not solely acquired through horizontal gene transfers of pathogenicity islands, transposons, and phages, then clonal clusters of enterotoxigenic Escherichia coli (ETEC) would contain few or even none of the VGs found in strains responsible for extraintestinal infections. To evaluate this possibility, 47 postweaning diarrhea (PWD) ETEC strains from different geographical origins and 158 commensal E. coli isolates from the gastrointestinal tracts of eight group-housed healthy pigs were screened for 36 extraintestinal and 18 enteric VGs using multiplex PCR assays. Of 36 extraintestinal VGs, only 8 were detected (fimH, traT, fyuA, hlyA, kpsMtII, k5, iha, and ompT) in the ETEC collection. Among these, hlyA (α-hemolysin) and iha (nonhemagglutinating adhesin) occurred significantly more frequently among the ETEC isolates than in the commensal isolates. Clustering analysis based on the VG profiles separated commensal and ETEC isolates and even differentiated serogroup O141 from O149. On the other hand, pulsed-field gel electrophoresis (PFGE) successfully clustered ETEC isolates according to both serotype and geographical origin. In contrast, the commensal isolates were heterogeneous with respect to both serotype and DNA fingerprint. This study has validated the use of VG profiling to examine pathogenic relationships between porcine ETEC isolates. The clonal relationships of these isolates can be further clarified by PFGE fingerprinting. The presence of extraintestinal VGs in porcine ETEC confirmed the hypothesis that individual virulence gene acquisitions can occur concurrently against a background of horizontal gene transfers of pathogenicity islands. Over time, this could enable specific clonotypes to respond to host selection pressure and to evolve into new strains with increased virulence.  相似文献   

17.
Data on the structural organization and evolutionary role of specific bacterial DNA regions known as genomic islands are reviewed. Emphasis is placed on the most extensively studied genomic islands, pathogenicity islands (PAIs), which are present in the chromosome of Gram-negative and Gram-positive pathogenic bacteria and absent from related nonpathogenic strains. PAIs are extended DNA regions that harbor virulence genes and often differ in GC content from the remainder of the bacterial genome. Many PAI occur in the tRNA genes, which provide a convenient target for foreign gene insertion. Some PAI are highly homologous to each other and contain sequences similar to ISs, phage att sites, and plasmid ori sites, along with functional or defective integrase and transposase genes, suggesting horizontal transfer of PAI among bacteria.  相似文献   

18.
We have characterized the LEE pathogenicity islands (PAIs) of two rabbit-specific strains of enteropathogenic E. coli (REPEC), 83/39 (serotype O15:H-) and 84/110-1 (O103:H2), and have compared them to homologous loci from the human enteropathogenic and enterohaemorrhagic E. coli strains, E2348/69 and EDL933, and another REPEC strain, RDEC-1. All five PAIs contain a 34 kb core region that is highly conserved in gene order and nucleotide sequence. However, the LEE of 83/39 is significantly larger (59 540 basepairs) than those of the human strains, which are less than 44 kb, and has inserted into pheU tRNA. The regions flanking the 34 kb core of 83/39 contain homologues of two putative virulence determinants, efa1/lifA and senA. The LEE of 84/110-1 is approximately 85 kb and is located at pheV tRNA. Its core is almost identical to those of 83/39 and RDEC-1, apart from a larger espF gene, but its flanking regions contain trcA, a putative virulence determinant of EPEC. All three REPEC LEE PAIs contain a gene for an integrase, Int-phe. The LEE PAI of 84/110-1 is also flanked by short direct repeats (representing the 3'-end of pheV tRNA), suggesting that it may be unstable. To investigate this possibility, we constructed a LEE::sacB derivative of 84/110-1 and showed that the PAI was capable of spontaneous deletion. We also showed that Int-phe can mediate site-specific integration of foreign DNA at the pheU tRNA locus of E. coli DH1. Together these results indicate possible mechanisms of mobilization and integration of the LEE PAI.  相似文献   

19.
Streptococcus agalactiae or Group B streptococci (GBS) are a common cause of serious diseases of newborns and adults. GBS pathogenicity largely depends on genes located on the accessory genome including several pathogenicity islands (PAI). The present paper is focused on the structure and molecular epidemiological analysis of one of the GBS pathogenicity islands—the pathogenicity island PAI XII (Glaser et al. Mol Microbiol 45(6):1499–1513, 2002). This PAI was found to be composed of three different mobile genetic elements: a composite transposon (PAI-C), a genomic islet (PAI-B), and a pathogenicity island associated with gene sspB1 (PAI-A). PAI-A in GBS has a homolog——PAI-A1 with similar, but a different genetic constellation. PCR-based analysis of GBS collections from different countries revealed that a strains lineage with PAI-A is less common than PAI-A1 and was determined to be present only among the strains obtained from Russia. Our results suggest that PAI-A and PAI-A1 have the same progenitor, which evolved independently and appeared in the GBS genome as separate genetic events. Results of this study reflect specific geographical distribution of the GBS strains with the mobile genetic element under study.  相似文献   

20.
Staphylococcal food poisoning (SFP), one of the commonest food‐borne diseases, results from the ingestion of one or more staphylococcal enterotoxins (SEs) produced in foods by Staphylococcus aureus. In the present study, 203 S. aureus strains originating from 83 outbreaks that had occurred in Tokyo were examined for their coagulase type and genotype of SEs to analyze their molecular epidemiological characteristics. The representative subsets of the 83 S. aureus isolates were analyzed by multilocus sequence typing (MLST) and S. aureus pathogenicity island (SaPI) scanning. The isolates were integrated into eight specific clonal complexes (CC) s; CC81, CC8, CC6, CC5, CC508, CC59, CC20 and CC30. The profiles of the coagulase type, SE/SEl genotype and the suspected type of enterotoxin‐encoding mobile genetic element (MGE) indicated a correlation with each CC. SaPI scanning showed fixed regularity between the distributions of genomic islands, including SaPIs, and the phylogenetic lineage based on MLST. These results indicate that the S. aureus isolates, which classified into eight CCs, have distinguishable properties concerning specific coagulase type, enterotoxin genotype and MGE type. Strains of S. aureus harboring these particular elements possess the potential to cause SFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号