首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously demonstrated that a beta-hairpin peptide, termed BH(9-10), derived from a single-layer beta-sheet of Borrelia OspA protein, formed a native-like beta-turn in trifluoroethanol (TFE) solution, and it assembled into amyloid-like fibrils at higher TFE concentrations. This peptide is highly charged, and fibrillization of such a hydrophilic peptide is quite unusual. In this study, we designed a circularly permutated peptide of BH(9-10), termed BH(10-9). When folded into their respective beta-hairpin structures found in OspA, these peptides would have identical cross-strand interactions but different turns connecting the strands. NMR study revealed that BH(10-9) had little propensity to form a turn structure both in aqueous and TFE solutions. At higher TFE concentration, BH(10-9) precipitated with a concomitant alpha-to-beta conformational conversion, in a similar manner to the BH(9-10) fibrillization. However, the BH(10-9) precipitates were nonfibrillar aggregation. The precipitation kinetics of BH(10-9) was exponential, consistent with a first-order molecular assembly reaction, while the fibrillization of BH(9-10) showed sigmoidal kinetics, indicative of a two-step reaction consisting of nucleation and molecular assembly. The correlation between native-like turn formation and fibrillization of our peptide system strongly suggests that BH(9-10) adopts a native-like beta-hairpin conformation in the fibrils. Remarkably, seeding with the preformed BH(10-9) precipitates changed the two-step BH(9-10) fibrillization to a one-step molecular assembly reaction, and disrupted the BH(9-10) fibril structure, indicating interactions between the BH(10-9) aggregates and the BH(9-10) peptide. Our results suggest that, in these peptides, cross-strand interactions are the driving force for molecular assembly, and turn formation limits modes of peptide assembly.  相似文献   

2.
Outer surface protein A (OspA) from Borrelia burgdorferi is a predominantly beta-sheet protein comprised of beta-strands beta1-beta21 and a short C-terminal alpha-helix. It contains two globular domains (N and C-terminal domains) and a unique single-layer beta-sheet (central beta-sheet) that connects the two domains. OspA contains an unusually large number of charged amino acid residues. To understand the mechanism of stabilization of this unique beta-sheet protein, thorough thermodynamic investigations of OspA and its truncated mutant lacking a part of the C-terminal domain were conducted using calorimetry and circular dichroism. The stability of OspA was found to be sensitive to pH and salt concentration. The heat capacity curve clearly consisted of two components, and all the thermodynamic parameters were obtained for each step. The thermodynamic parameters associated with the two transitions are consistent with a previously proposed model, in which the first transition corresponds to the unfolding of the C-terminal domain and the last two beta-strands of the central beta-sheet, and the second transition corresponds to that of the N-terminal domain and the first beta-strand of the central beta-sheet in the second peak. The ratio of calorimetric and van't Hoff enthalpies indicates that the first peak includes another thermodynamic intermediate state. Large heat capacity changes were observed for both transitions, indicative of large changes in the exposure of hydrophobic surfaces associated with the transitions. This observation demonstrates that hydrophobic parts are buried efficiently in the native structure in spite of the low content of hydrophobic residues in OspA. By decomposing the enthalpy, entropy, and Gibbs free energy into contributions from different interactions, we found that the enthalpy changes for hydrogen bonding and polar interactions are exceptionally large, indicating that OspA maintains its stability by making full use of its unique beta-sheet and high content of polar residues. These thermodynamic analyses demonstrated that it is possible to maintain protein tertiary structure by making effective use of an unusual amino acid composition.  相似文献   

3.
Understanding the role of the L/D-stereospecificity of amino acids is important in obtaining further insight into the mechanism of the formation of amyloid fibrils. Beta(2)-microglobulin is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. A 22-residue peptide of beta(2)-microglobulin, Ser20-Lys41 (L-K3 peptide), obtained by digestion with Acromobacter protease I, formed amyloid-like fibrils in 50% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl at 25 degrees C, as confirmed by thioflavin T fluorescence, circular dichroism spectra, and atomic force microscopy images. A synthetic K3 peptide composed of D-amino acids (D-K3 peptide) formed similar fibrils but with opposite chirality as indicated by circular dichroism spectra. A mixture of L-K3 and D-K3 peptides also formed fibrils, although the L- and D-amino acid composition of each fibril is unknown. To examine the possible cross-reactivity between L- and D-enantiomers, we carried out seeding experiments in which preformed seeds were extended by monomers. The results revealed that only the homologous extensions proceed smoothly, i.e., the growth of L-seeds by L-monomers or D-seeds by D-monomers. The results suggest that, while the fibrils derived from L- and D-peptides form in a similar manner but with opposite stereochemistry, a cross-reaction between them is prevented because the geometry of the mixed sheet cannot satisfy dominant factors for beta-sheet stabilization.  相似文献   

4.
Koide S  Bu Z  Risal D  Pham TN  Nakagawa T  Tamura A  Engelman DM 《Biochemistry》1999,38(15):4757-4767
Outer surface protein A (OspA) from the Lyme disease spirochete, Borrelia burgdorferi, is a dumbbell-shaped protein in which two globular domains are connected by a three-stranded beta-sheet segment that is solvent-exposed on both faces. Previous studies showed that the whole protein, including the single-layer beta-sheet, is highly rigid. To elucidate the folding mechanism and the role of the central beta-sheet in the formation of the rigid molecule, we investigated the equilibrium thermal denaturation reaction of OspA. We applied differential scanning calorimetry, heteronuclear NMR spectroscopy, and solution small-angle X-ray scattering (SAXS) to characterize the reaction in detail. All three techniques revealed that OspA denatures in two separable cooperative transitions. NMR measurements on OspA specifically 15N-labeled at Lys residues identified the locations of the two folding units and revealed that the C-terminal segment is less stable than the remaining N-terminal segment. The boundary between the two folding units is located within the central beta-sheet. The interconversion among the three folding states (fully folded, C-terminus unfolded, and fully denatured) is slow relative to chemical shift differences (<24 Hz), indicating that there are significant kinetic barriers in the denaturation reactions. SAXS measurements determined the radius of gyration of the native protein to be 25.0 +/- 0.3 A, which increases to 34.4 +/- 1.0 A in the first transition, and then to 56.1 +/- 1.6 A in the second transition. Thus, the intermediate state, in which the C-terminal folding unit is already denatured, is still compact. These results provide a basis for elucidating the folding mechanism of OspA.  相似文献   

5.
The crystal structure of a soluble form of Borrelia burgdorferi outer surface protein A (OspA) complexed with the Fab fragment of a monoclonal antibody has revealed an unusual structure that has a repetitive antiparallel beta topology with a nonglobular, single layer beta-sheet connecting the globular N- and C-terminal domains. Earlier NMR studies have shown that the local structure of OspA including the single layer beta-sheet is similar to the crystal structure. Here we report a small angle X-ray scattering (SAXS) study of the global conformation of OspA in solution. The radius of gyration (Rg) and the length distribution function (P(r)) of OspA measured by SAXS in solution are nearly identical to the calculated ones from the crystal structure, respectively. The NMR and SAXS experiments complement each other to show that OspA including the central single-layer beta-sheet is a stable structure in solution, and that the OspA crystal structure represents the predominant solution conformation of the protein.  相似文献   

6.
We observed gelation of a 23-residue peptide derived from the beta-sheet domain of platelet factor-4 (PF4(24)(-)(46)). The gels were primarily heterogeneous mixtures of 50-200 microm spherical aggregates in a less-dense gel matrix. Infrared and circular dichroism spectroscopies showed gelation involving the conversion of PF4(24)(-)(46) from random coil to beta-sheet. We used aggregation-induced NMR resonance broadening to show that temperature, pH, and ionic strength influenced PF4(24)(-)(46) gelation rates. Under identical solution conditions, gel formation took days at T /= 50 degrees C. Gelation was most rapid at pH values near the pK(a) of the central His35 residue. Increases in solution ionic strength reduced the critical gelation concentration of PF4(24)(-)(46). Our results suggest that PF4(24)(-)(46) gels by a process combining aspects of both heat-set and beta-fibril gelation mechanisms.  相似文献   

7.
To understand the mechanism of amyloid fibril formation of a protein, we examined wild-type and three mutant human lysozymes containing both amyloidogenic and non-amyloidogenic proteins: I56T (amyloidogenic); EAEA, which has four additional residues (Glu-Ala-Glu-Ala-) at the N-terminus located on a beta-structure; and EAEA-I56T, which is an I56T mutant of EAEA. All formed amyloid-like fibrils through an in the increase contents of alpha-helix with increasing concentration of ethanol. The order of propensity for amyloid-like fibril formation in highly concentrated ethanol solution is EAEA-I56T > EAEA > I56T > wild-type. This order is almost the reverse of the order of conformational stability of these proteins, wild-type > EAEA > I56T > EAEA-I56T. The important views in this work are as follows. (i) Artificially modified proteins formed amyloid fibrils in vitro. This means that amyloid formation is a generic property of polypeptide chains. (ii) The amyloidogenic mutation Ile56 to Thr caused the destabilization and promoted fibril formation in the wild-type and EAEA human lysozymes, indicating that instability facilitates amyloid formation. (iii) The mutant protein EAEA human lysozyme had higher propensity for fibril formation than the amyloidogenic mutant protein, indicating that amyloid formation is controlled not only by stability but also by other factors. In this case, appending polypeptide chains to a beta-structure accelerated amyloid formation.  相似文献   

8.
Borrelia outer surface protein A (OspA) contains a unique single-layer beta-sheet that connects N and C-terminal globular domains. This single-layer beta-sheet segment (beta-strands 8-10) is highly stable in solution, although it is exposed to the solvent on both faces of the sheet and thus it does not contain a hydrophobic core. Here, we tested whether interactions with the C-terminal domain are essential for the formation of the single-layer beta-sheet. We characterized the solution structure, dynamics and stability of an OspA fragment corresponding to beta-strands 1-12 (termed OspA[27-163]), which lacks a majority of the C-terminal globular domain. Analyses of NMR chemical shifts and backbone nuclear Overhauser effect (NOE) connectivities showed that OspA[27-163] is folded except the 12th and final beta-strand. (1)H-(15)N heteronuclear NOE measurements and amide H-(2)H exchange revealed that the single-layer beta-sheet in this fragment is more flexible than the corresponding region in full-length OspA. Thermal-denaturation experiments using differential scanning calorimetry and NMR spectroscopy revealed that the N-terminal globular domain in the fragment has a conformational stability similar to that of the same region in the full-length protein, and that the single-layer beta-sheet region also has a modest thermal stability. These results demonstrate that the unique single-layer beta-sheet retains its conformation in the absence of its interactions with the C-terminal domain. This fragment is significantly smaller than the full-length OspA, and thus it is expected to facilitate studies of the folding mechanism of this unusual beta-sheet structure.  相似文献   

9.
Amyloid is associated with serious diseases including Alzheimer's disease and senile-systemic amyloidosis due to misfolded proteins. In the course of study of the denaturation process of methionine aminopeptidase (MAP) from the hyperthermophile P. furiosus, we found that MAP forms amyloid-like fibrils, and we then investigated the mechanism of amyloid fibril formation. The kinetic experiments on denaturation monitored by CD at 222 nm indicated that MAP in the presence of 3.37 M GuHCl at pH 3.31 changed to a conformation containing a considerable content of beta-sheet structure after the destruction of the alpha-helical structure. MAP in this beta-rich conformation was highly associated, and its stability was remarkably high: the midpoint of the GuHCl denaturation curve was 4.82 M at pH 3.0, and a thermal transition was not observed up to 125 degrees C by calorimetry. The amyloid-like fibril formation of MAP was confirmed by Congo red staining with a typical peak at 542 nm in the difference spectrum, showing a cross-beta X-ray diffraction pattern with a clear sharp reflection at 4.7 A and a characteristic unbranched fibrillar appearance with a length of about 1000 A and a diameter of about 70 A in the electron micrographs. Present results indicate that the amyloid-like form of MAP appears just after the protein is almost completely denatured, and even highly stable proteins can also form amyloid-like conformation under conditions where the denatured state of the protein is abundantly populated.  相似文献   

10.
Display of peptide libraries on filamentous phage has led to the identification of peptides of the form X(2-5)CX(2)GPXTWXCX(2-5) (where X is a variable residue) that bind to the extra-cellular portion of the erythropoietin receptor (EPO-R). These peptides adopt beta-hairpin conformations when co-crystallized with EPO-R. Solution NMR studies reveal that the peptide is conformationally heterogeneous in the absence of receptor due to cis-trans isomerization about the Gly-Pro peptide bond. Replacement of the conserved threonine residue with glycine at the turn i+3 position produces a stable beta-hairpin conformation in solution, although this peptide no longer has activity in an EPO-R-dependent cell proliferation assay. A truncated form of the EPO-R-binding peptide (containing the i+3 glycine residue) also forms a highly populated, monomeric beta-hairpin. In contrast, phage-derived peptide antagonists of insulin-like growth factor binding protein 1 (IGFBP-1) have a high level of sequence identity with the truncated EPO-R peptide (eight of 12 residues) yet adopt a turn-alpha-helix conformation in solution. Peptides containing all possible pairwise amino acid substitutions between the EPO-R and IGFBP-1 peptides have been analyzed to assess the degree to which the non-conserved residues stabilize the hairpin or helix conformation. All four residues present in the original sequence are required for maximum population of either the beta-hairpin or alpha-helix conformation, although some substitutions have a more dominant effect. The results demonstrate that, within a given sequence, the observed conformation can be dictated by a small subset of the residues (in this case four out of 12).  相似文献   

11.
Myoglobin is an alpha-helical globular protein that contains two highly conserved tryptophan residues located at positions 7 and 14 in the N-terminal region of the protein. Replacement of both indole residues with phenylalanine residues, i.e. W7F/W14F, results in the expression of an unstable, not correctly folded protein that does not bind the prosthetic group. Here we report data (Congo red and thioflavine T binding assay, birefringence, and electron microscopy) showing that the double Trp/Phe replacements render apomyoglobin molecules highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions in which most of the wild-type protein is in the native state. In refolding experiments, like the wild-type protein, the W7F/W14F apomyoglobin mutant formed a soluble, partially folded helical state between pH 2.0 and pH 4.0. A pH increase from 4.0 to 7.0 restored the native structure only in the case of the wild-type protein and determined aggregation of W7F/W14F. The circular dichroism spectrum recorded immediately after neutralization showed that the polypeptide consists mainly of beta-structures. In conclusion, under physiological pH conditions, some mutations that affect folding may cause protein aggregation and the formation of amyloid-like fibrils.  相似文献   

12.
The conversion of alpha-synuclein into amyloid fibrils in the substantia nigra is linked to Parkinson's disease. Alpha-synuclein is natively unfolded in solution, but can be induced to form either alpha-helical or beta-sheet structure depending on its concentration and the solution conditions. The N-terminus of alpha-synuclein comprises seven 11-amino acid repeats (XKTKEGVXXXX) which can form an amphipathic alpha-helix. Why seven repeats, rather than six or eight, survived the evolutionary process is not clear. To probe this question, two sequence variants of alpha-synuclein, one with two fewer (del2) and one with two additional (plus2) repeats, were studied. As compared to wild-type alpha-synuclein, the plus2 variant disfavors the formation of beta-sheet-rich oligomers, including amyloid fibrils. In contrast, the truncated variant, del2, favors beta-sheet and fibril formation. We propose that the repeat number in WT alpha-synuclein represents an evolutionary balance between the functional conformer of alpha-synuclein (alpha-helix and/or random coil) and its pathogenic beta-sheet conformation. N-terminal truncation of alpha-synuclein may promote pathogenesis.  相似文献   

13.

Background  

Arabidopsis thaliana copper metallochaperone CCH is a functional homologue of yeast antioxidant ATX1, involved in cytosolic copper transport. In higher plants, CCH has to be transported to specialised cells through plasmodesmata, being the only metallochaperone reported to date that leaves the cell where it is synthesised. CCH has two different domains, the N-terminal domain conserved among other copper-metallochaperones and a C-terminal domain absent in all the identified non-plant metallochaperones. The aim of the present study was the biochemical and biophysical characterisation of the C-terminal domain of the copper metallochaperone CCH.  相似文献   

14.
An analysis of the sequences of scyllatoxin and charybdotoxin suggested that it would be possible to design a core peptide sequence which would still fold to give the β-hairpin and helix seen in the toxins, but which would eliminate one disulfide and connecting residues. The core sequence was modeled, then synthesized and purified. The cysteines oxidize in air to give the same disulfide pairings as seen in the parent toxins as the major product. The three-dimensional structure of the core sequence peptide, termed Max, was determined using proton NMR spectroscopy and found to be identical in secondary structure to the toxins. However differences were found in the relative orientation of the β-hairpin and helix. The use of this structural motif, found in many insect toxins, as a disulfide framework for exploring sequence/structure/activity relationships is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Synucleinsare small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.  相似文献   

16.
Ganesh S  Jayakumar R 《Biopolymers》2003,70(3):336-345
Self-assembly of two tripeptide derivatives containing three nonpolar isoleucine moieties and polar oxyethylene groups are studied in methanol. Peptide A [CH3(OCH2CH2)3OCH2CO(Ile)3OCH3] and peptide B [CH3(OCH2CH2)3OCH2CO(Ile)3NH (CH2CH2O)3CH3] take a mixture of unordered and helical conformation at low concentration (8.5 x 10(-4) M). However, at high concentration (2 x 10(-3) M), both the peptide showed significant increase in the helical conformation. An interesting conformational transition of peptides A and B at various methanol contents was observed in the solvated films of these compounds by spectroscopic methods like the far-uv circular dichroism and Fourier transform infrared (FT-IR) techniques. Peptide B, which contains more polar oxyethylene groups than A, showed a highly cooperative conformational transition when the methanol content was decreased. This transition was characterized by a large increase of beta-sheet, retaining a alpha-helical contribution. Peptide A showed a conformational transition resulting in a beta-sheet in the aggregated state. From the CD spectra, the ratio in the ellipticity indicates that peptide B forms twisted antiparallel beta-sheet conformation, whereas peptide A takes a parallel beta-sheet conformation. The results obtained in this work indicates the role of polar derivatization on the conformational preference of peptides having similar sequence.  相似文献   

17.
A 20-membered cyclic peptide disulfide has been synthesized as a conformational model for disulfide loops of limited ring size. 1H-nmr studies at 270 MHz establish the presence of three intramolecular hydrogen bonds involving the Leu, Val, and methylamide NH groups in CDCl3. Evidence for peptide aggregation in CDCl3 is also presented. A structural transition involving loosening of the hydrogen bond formed by the Val NH group is observed upon the measured addition of (CD3)2SO to CDCl3. Hydrogen-bonding studies, together with unusually low field positions of the Cys(1) and Cys(6) CαH resonances and high J values provide support for an intramolecular antiparallel β-sheet conformation, facilitated by a chain reversal at the Aib-Ala segment. Extensive nuclear Overhauser effect studies provide compelling evidence for the proposed conformation and also establish a type I′ β-turn at the Aib-Ala residues, the site of the chain reversal.  相似文献   

18.
The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which in most cases undergoes aggregation. In an organism infected with PrP(Sc), PrP(C) is converted into the beta-sheet form, generating more PrP(Sc). We find that sequence-specific DNA binding to recombinant murine prion protein (mPrP-(23-231)) converts it from an alpha-helical conformation (cellular isoform) into a soluble, beta-sheet isoform similar to that found in the fibrillar state. The recombinant murine prion protein and prion domains bind with high affinity to DNA sequences. Several double-stranded DNA sequences in molar excess above 2:1 (pH 4.0) or 0.5:1 (pH 5.0) completely inhibit aggregation of prion peptides, as measured by light scattering, fluorescence, and circular dichroism spectroscopy. However, at a high concentration, fibers (or peptide aggregates) can rescue the peptide bound to the DNA, converting it to the aggregating form. Our results indicate that a macromolecular complex of prion-DNA may act as an intermediate for the formation of the growing fiber. We propose that host nucleic acid may modulate the delicate balance between the cellular and the misfolded conformations by reducing the protein mobility and by making the protein-protein interactions more likely. In our model, the infectious material would act as a seed to rescue the protein bound to nucleic acid. Accordingly, DNA would act on the one hand as a guardian of the Sc conformation, preventing its propagation, but on the other hand may catalyze Sc conversion and aggregation if a threshold level is exceeded.  相似文献   

19.
Leucine-rich repeats (LRRs) are 22-28 amino acid-long sequence motifs found in a family of cytoplasmic, membrane and extracellular proteins. There is evidence that LRRs function in signal transduction, cellular adhesion and protein-protein interactions. Here we report unusual properties of a synthetic LRR peptide derived from the sequence of the Drosophila membrane receptor Toll. In neutral solution the peptide forms a gel revealed by electron microscopy to consist of extended filaments approximately 8 nm in thickness. As the gel forms, the circular dichroism spectrum of the peptide solution changes from one characteristic of random coil to one associated with beta-sheet structures. Molecular modelling suggests that the peptide form an amphipathic structure with a predominantly apolar and charged surface. Based on these results, models for the gross structure of the peptides filaments and a possible molecular mechanism for cellular adhesion are proposed.  相似文献   

20.
NMR spectroscopy is used to show that a 20-residue beta-hairpin peptide sequence derived from ferredoxin I, with a Pro-Asp two-residue type I turn which is uncommon in beta-hairpins, is unstructured in aqueous solution but shows NOE evidence for partial folding in the presence of sodium dodecylsulphate micelles. The peptide has a number of lysine residues in the N-terminal beta-strand capable of interacting with the micelle surface and templating the partial folding of the hairpin by reducing the entropic cost of ordering the peptide backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号