首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Crystal structure of human dihydrofolate reductase complexed with folate   总被引:8,自引:0,他引:8  
The crystal structure of recombinant human dihydrofolate reductase with folate bound in the active site has been determined and the structural model refined at 0.2-nm resolution. Preliminary studies of the binding of the inhibitors methotrexate and trimethoprim to the human apoenzyme have been performed at 0.35-nm resolution. The conformations of the chemically very similar ligands folate and methotrexate, one a substrate the other a potent inhibitor, differ substantially in that their pteridine rings are in inverse orientations relative to their p-aminobenzoyl-L-glutamate moieties. Methotrexate binding is similar to that previously observed in two bacterial enzymes but is quite different from that observed in the enzyme from a mouse lymphoma cell line [Stammers et al. (1987) FEBS Lett. 218, 178-184]. The geometry of the polypeptide chain around the folate binding site in the human enzyme is not consistent with conclusions previously drawn with regard to the species selectivity of the inhibitor trimethoprim [Matthews et al. (1985) J. Biol. Chem. 260, 392-399].  相似文献   

4.
We examined the role that blockage of cells in the cell cycle may play in the stimulation of gene amplification and enhancement of drug resistance. We found that several different inhibitors of DNA synthesis, which were each able to block cells at the G1-S-phase boundary, induced an enhanced cycloheximide-sensitive synthesis of an early S-phase cell cycle-regulated enzyme, dihydrofolate reductase, and of other proteins as well. This response was specific, in that blockage at the G2 phase did not result in overproduction of the enzyme. When the cells were released from drug inhibition, DNA synthesis resumed, resulting in a cycloheximide-sensitive elevation in DNA content per cell. We speculate that the excess DNA synthesis (which could contribute to events detectable later as gene amplification) is a consequence of the accumulation of S-phase-specific proteins in the affected cells, which may then secondarily influence the pattern of DNA replication.  相似文献   

5.
6.
Summary Both the polymerase and the exonuclease activities of DNA polymerase III* are inactivated by treatment with nitrosoguanidine. The treatment of the DNA template with the mutagen does not affect the template in supporting DNA synthesis. No effect of nitrosoguanidine upon fidelity of replication in vitro was detected.  相似文献   

7.
8.
DNA sequence of a plasmid-encoded dihydrofolate reductase   总被引:17,自引:0,他引:17  
Summary The sequence of the methotrexate-resistant dihydrofolate reductase (DHFR) gene borne by the plasmid R-388 was determined. The gene was subcloned and mapped by an in vitro mutagenesis method involving insertion of synthetic oligonucleotide decamers encoding the BamHI recognition site. Sites of insertion that destroyed the methotrexate resistance fell in two regions separated by 300 bp within a 1.2 kb fragment. One of these regions encodes a 78 amino acid polypeptide homologous to another drug-resistant DHFR. The second region essential for DHFR expression appears to be the promoter of the DHFR gene.  相似文献   

9.
The 2.3-A crystal structure of recombinant human dihydrofolate reductase (EC 1.5.1.3, DHFR) has been solved as a binary complex with folate (a poor substrate at neutral pH) and also as a binary complex with an inhibitor, 5-deazafolate. The inhibitor appears to be protonated at N8 on binding, whereas folate is not. Rotation of the peptide plane joining I7 and V8 from its position in the folate complex permits hydrogen bonding of 5-deazafolate's protonated N8 to the backbone carbonyl of I7, thus contributing to the enzyme's greater affinity for 5-deazafolate than for folate. In this respect it is likely that bound 5-deazafolate furnishes a model for 7,8-dihydrofolate binding and, in addition, resembles the transition state for folate reduction. A hypothetical transition-state model for folate reduction, generated by superposition of the DHFR binary complexes human.5-deazafolate and chicken liver.NADPH, reveals a 1-A overlap of the binding sites for folate's pteridine ring and the dihydronicotinamide ring of NADPH. It is proposed that this binding-site overlap accelerates the reduction of both folate and 7,8-dihydrofolate by simultaneously binding substrate and cofactor with a sub van der Waals separation that is optimal for hydride transfer.  相似文献   

10.
11.
12.
The migration of electron density of a substrate (folate) on binding to an enzyme (dihydrofolate reductase) is studied by a quantum-mechanical method originally developed in solid state physics. A significant polarization of the substrate is induced by the enzyme, toward the transition state of the enzymatic reaction, at the same time giving rise to "electronic strain energy" in the substrate and enhanced protein-ligand interactions. The spatial arrangement of protein charges that induces the polarization is identified and found to be structurally conserved for bacterial and vertebrate dihydrofolate reductases.  相似文献   

13.
Dihydrofolate reductase was obtained from Pneumocystis carinii isolated from heavily infected lungs of female Sprague-Dawley rats infected by transtracheal inoculation. The enzyme differed significantly from other forms of dihydrofolate reductase in response to KCl and to antifolate drugs. Dihydrofolate reductase from P. carinii was used to assess activity of analogs of pyrimethamine, methotrexate, and trimetrexate. One pyrimethamine analog was selective for P. carinii dihydrofolate reductase; potency was in the micromolar range. In contrast, 21 methotrexate analogs and 2 trimetrexate analogs were selective for P. carinii dihydrofolate reductase; potencies for these were in the nanomolar range.  相似文献   

14.
15.
This paper describes the design and synthesis of potential inhibitors of Trypanosoma cruzi dihydrofolate reductase using a structure-based approach. A model of the structure of the T. cruzi enzyme was compared with the structure of the human enzyme. The differences were used to design modifications of methotrexate to produce compounds which should be selective for the parasite enzyme. The derivatives of methotrexate were synthesised and tested against the enzyme and intact parasites.  相似文献   

16.
17.
Product identification and kinetic data are presented for the conversion of 7,8-dihydrobiopterin into tetrahydrobiopterin by purified rabbit brain dihydrofolate reductase.  相似文献   

18.
A strategy devised to isolate a gene coding for a dihydrofolate reductase from Thermus thermophilus DNA delivered only clones harboring instead a gene (the T. thermophilus dehydrogenase [DH(Tt)] gene) coding for a dihydropteridine reductase which displays considerable dihydrofolate reductase activity (about 20% of the activity detected with 6,7-dimethyl-7,8-dihydropterine in the quinonoid form as a substrate). DH(Tt) appears to account for the synthesis of tetrahydrofolate in this bacterium, since a classical dihydrofolate reductase gene could not be found in the recently determined genome nucleotide sequence (A. Henne, personal communication). The derived amino acid sequence displays most of the highly conserved cofactor and active-site residues present in enzymes of the short-chain dehydrogenase/reductase family. The enzyme has no pteridine-independent oxidoreductase activity, in contrast to Escherichia coli dihydropteridine reductase, and thus appears more similar to mammalian dihydropteridine reductases, which do not contain a flavin prosthetic group. We suggest that bifunctional dihydropteridine reductases may be responsible for the synthesis of tetrahydrofolate in other bacteria, as well as archaea, that have been reported to lack a classical dihydrofolate reductase but for which possible substitutes have not yet been identified.  相似文献   

19.
In mice obtained after microinjection into the male pronucleus of fertilized eggs of the plasmid, containing the bacterial gene of dihydrofolate reductase (DHFR), under the control of the early promotor of the simian virus 40 (SV40), an integration of the foreign DNA into the mouse genome is found. About 30% of the treated animals contain the integrated plasmid DNA sequences, i.e. are transgenic. In 2 of 7 mice, containing the introduced plasmid in their genome, the methotrexate-resistant DHFR activity is found in the kidney and spleen, which may be due to the expression of gene DHFR. The plasmid DNA sequences and the ability to synthesise the methotrexate-resistant enzyme DHFR are transmitted to the next generation of mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号