首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The linear, single-stranded enterovirus RNA genome is flanked at either end with a nontranslated region (NTR). By replacing the entire 5' NTR of coxsackievirus B3 (CVB3) with that from type 1 poliovirus, a progeny virus was obtained following transfection of HeLa cells. The chimeric virus, CPV/49, replicates like the parental CVB3 strain in HeLa cells but is attenuated for replication and yield in primary human coronary artery endothelial cell cultures, in a human pancreas tumor cell line, and in primary murine heart fibroblast cultures. Western blotting analyses of CPV/49 replication in murine heart fibroblast cultures demonstrate that synthesis of CPV/49 proteins is significantly slower than that of the parental CVB3 strain. CPV/49 replicates in murine hearts and pancreata, causing no disease in hearts and a minor pancreatic inflammation in some mice that resolves by 28 days postinoculation. A single inoculation with CPV/49 induces protective anti-CVB3 neutralizing antibody titers that completely protect mice from both heart and pancreatic disease when mice are challenged 28 days p.i. with genetically diverse virulent strains of CVB3. That a chimeric CVB3 strain, created from sequences of two virulent viruses, is sufficiently attenuated to act as an avirulent, protective vaccine strain in mice suggests that chimeric genome technology merits further evaluation for the development of new nonpoliovirus enteroviral vectors.  相似文献   

2.
T Furuya  M M Lai 《Journal of virology》1993,67(12):7215-7222
The termini of viral genomic RNA and its complementary strand are important in the initiation of viral RNA replication, which probably involves both viral and cellular proteins. To detect the possible cellular proteins involved in the replication of mouse hepatitis virus RNA, we performed RNA-protein binding studies with RNAs representing both the 5' and 3' ends of the viral genomic RNA and the 3' end of the negative-strand complementary RNA. Gel-retardation assays showed that both the 5'-end-positive- and 3'-end-negative-strand RNA formed an RNA-protein complex with cellular proteins from the uninfected cells. UV cross-linking experiments further identified a 55-kDa protein bound to the 5' end of the positive-strand viral genomic RNA and two proteins 35 and 38 kDa in size bound to the 3' end of the negative-strand cRNA. The results of the competition assay confirmed the specificity of this RNA-protein binding. No proteins were found to bind to the 3' end of the viral genomic RNA under the same conditions. The binding site of the 55-kDa protein was mapped within the 56-nucleotide region from nucleotides 56 to 112 from the 5' end of the positive-strand RNA, and the 35- and 38-kDa proteins bound to the complementary region on the negative-strand RNA. The 38-kDa protein was detected only in DBT cells but was not detected in HeLa or COS cells, while the 35-kDa protein was found in all three cell types. The juxtaposition of the different cellular proteins on the complementary sites near the ends of the positive- and negative-strand RNAs suggests that these proteins may interact with each other and play a role in mouse hepatitis virus RNA replication.  相似文献   

3.
4.
Infection of primary cultures of total splenic and thymic cells from BALB/c and C3H/HeN mice with CVB4 E2 and JVB strains has been investigated. The presence of positive-strand viral RNA within cells was determined by semi-nested RT-PCR, and viral replication was attested by detection of intracellular negative-strand viral RNA and by release of infectious particles in culture supernatants. Viral replication occurred with both CVB4 strains to an extent dependent on the genetic background of the host. No interferon-alpha production was detected in the supernatants of CVB4-infected cultures using biological titration. Together these results suggest that infection of splenic and thymic cells can play a role in virus dissemination, and therefore in the pathophysiology of CVB4 infections.  相似文献   

5.
In order to identify organ and cellular targets of persistent enterovirus infection in vivo, immunocompetent mice (SWR/J, H-2q) were inoculated intraperitoneally with coxsackievirus B3 (CVB3). By use of in situ hybridization for the detection of enteroviral RNA, we show that CVB3 is capable of inducing a multiorgan disease. During acute infection, viral RNA was visualized at high levels in the heart muscle, pancreas, spleen, and lymph nodes and at comparably low levels in the central nervous system, thymus, lung, and liver. At later stages of the disease, the presence of enteroviral RNA was found to be restricted to the myocardium, spleen, and lymph nodes. To characterize infected lymphoid cells during the course of the disease, enteroviral RNA and cell-specific surface antigens were visualized simultaneously in situ in spleen tissue sections. In acute infection, the majority of infected spleen cells, which are located primarily at the periphery of lymph follicles, were found to express the CD45R/B220+ phenotype of pre-B and B cells. Whereas viral RNA was also detected in certain CD4+ helper T cells and Mac-1+ macrophages, no enteroviral genomes were identified in CD8+ cytotoxic/suppressor T cells. Later in disease, the localization of enteroviral RNA revealed a persistent type of infection of B cells within the germinal centers of secondary follicles. In addition, detection of the replicative viral minus-strand RNA intermediate provided evidence for virus replication in lymphoid cells of the spleen during the course of the disease. These data indicate that immune cells are important targets of CVB3 infection, providing a noncardiac reservoir for viral RNA during acute and persistent myocardial enterovirus infection.  相似文献   

6.
The 5' cloverleaf in poliovirus RNA has a direct role in regulating the stability, translation, and replication of viral RNA. In this study, we investigated the role of stem a in the 5' cloverleaf in regulating the stability and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Our results showed that disrupting the duplex structure of stem a destabilized viral RNA and inhibited efficient negative-strand synthesis. Surprisingly, the duplex structure of stem a was not required for positive-strand synthesis. In contrast, altering the primary sequence at the 5'-terminal end of stem a had little or no effect on negative-strand synthesis but dramatically reduced positive-strand initiation and the formation of infectious virus. The inhibition of positive-strand synthesis observed in these reactions was most likely a consequence of nucleotide alterations in the conserved sequence at the 3' ends of negative-strand RNA templates. Previous studies suggested that VPgpUpU synthesized on the cre(2C) hairpin was required for positive-strand synthesis. Therefore, these results are consistent with a model in which preformed VPgpUpU serves as the primer for positive-strand initiation on the 3'AAUUUUGUC5' sequence at the 3' ends of negative-strand templates. Our results suggest that this sequence is the primary cis-acting element that is required for efficient VPgpUpU-primed positive-strand initiation.  相似文献   

7.
8.
The initiation of enteroviral positive-strand RNA synthesis requires the presence of a functional ribonucleoprotein complex containing a cloverleaf-like RNA secondary structure at the 5' end of the viral genome. Other components of the ribonucleoprotein complex are the viral 3CD proteinase (the precursor protein of the 3C proteinase and the 3D polymerase), the viral 3AB protein and the cellular poly(rC)-binding protein 2. For a molecular characterization of the RNA-binding properties of the enteroviral proteinase, the 3C proteinase of coxsackievirus B3 (CVB3) was bacterially expressed and purified. The recombinant protein is proteolytically active and forms a stable complex with in vitro-transcribed cloverleaf RNA of CVB3. The formation of stable complexes is also demonstrated with cloverleaf RNA of poliovirus (PV) 1, the first cloverleaf of bovine enterovirus (BEV) 1, and human rhinovirus (HRV) 2 but not with cloverleaf RNA of HRV14 and the second cloverleaf of BEV1. The apparent dissociation constants of the protein:RNA complexes range from approx. 1.7 to 4.6 microM. An electrophoretic mobility shift assay with subdomain D of the CVB3 cloverleaf demonstrates that this RNA is sufficient to bind the CVB3 3C proteinase. Binding assays using mutated versions of CVB3 and HRV14 cloverleaf RNAs suggest that the presence of structural features rather than a defined sequence motif of loop D are important for 3C proteinase-RNA interaction.  相似文献   

9.
A cloverleaf structure at the 5' terminus of poliovirus RNA binds viral and cellular proteins. To examine the role of the cloverleaf in poliovirus replication, we determined how cloverleaf mutations affected the stability, translation and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Mutations within the cloverleaf destabilized viral RNA in these reactions. Adding a 5' 7-methyl guanosine cap fully restored the stability of the mutant RNAs and had no effect on their translation. These results indicate that the 5' cloverleaf normally protects uncapped poliovirus RNA from rapid degradation by cellular nucleases. Preinitiation RNA replication complexes formed with the capped mutant RNAs were used to measure negative-strand synthesis. Although the mutant RNAs were stable and functional mRNAs, they were not active templates for negative-strand RNA synthesis. Therefore, the 5' cloverleaf is a multifunctional cis-acting replication element required for the initiation of negative-strand RNA synthesis. We propose a replication model in which the 5' and 3' ends of viral RNA interact to form a circular ribonucleoprotein complex that regulates the stability, translation and replication of poliovirus RNA.  相似文献   

10.
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.  相似文献   

11.
Chimeric poliovirus RNAs, possessing the 5' nontranslated region (NTR) of hepatitis C virus in place of the 5' NTR of poliovirus, were used to examine the role of the poliovirus 5' NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3' NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5'-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5'-terminal cloverleaf and 3' NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA.  相似文献   

12.
The lengthy 5' nontranslated region of coxsackievirus B3 (CVB3) forms a highly ordered secondary structure containing an internal ribosome entry segment (IRES), which plays an important role in controlling viral translation and pathogenesis. The stem-loop V (SL-V) of this IRES contains a large lateral bulge loop which encompasses two conserved GNRA motifs. In this study, we analyzed the effects of point mutations within the GNRA motifs of the CVB3 IRES. We characterized in vitro virus production and translation efficiency and we tested in vivo virulence of two CVB3 mutants produced by site-directed mutagenesis. The GNAA1 and GNAA2 RNAs displayed decreased translation initiation efficiency when translated in rabbit reticulocyte lysates. This translation defect was correlated with reduced yields of infectious virus particles in HeLa cells in comparison with the wild type. When inoculated orally into Swiss mice, both mutant viruses were avirulent and caused neither inflammation nor necrosis in hearts. These results highlight the important role of the GNRA motifs within the SL-V of the IRES of CVB3, in directing translation initiation.  相似文献   

13.
Coxsackievirus B3 (CVB3) is the most common causal agent of viral myocarditis, but existing drug therapies are of limited value. Application of small interfering RNA (siRNA) in knockdown of gene expression is an emerging technology in antiviral gene therapy. To investigate whether RNA interference (RNAi) can protect against CVB3 infection, we evaluated the effects of RNAi on viral replication in HeLa cells and murine cardiomyocytes by using five CVB3-specific siRNAs targeting distinct regions of the viral genome. The most effective one is siRNA-4, targeting the viral protease 2A, achieving a 92% inhibition of CVB3 replication. The specific RNAi effects could last at least 48 h, and cell viability assay revealed that 90% of siRNA-4-pretreated cells were still alive and lacked detectable viral protein expression 48 h postinfection. Moreover, administration of siRNAs after viral infection could also effectively inhibit viral replication, indicating its therapeutic potential. Further evaluation by combination found that no enhanced inhibitory effects were observed when siRNA-4 was cotransfected with each of the other four candidates. In mutational analysis of the mechanisms of siRNA action, we found that siRNA functions by targeting the positive strand of virus and requires a perfect sequence match in the central region of the target, but mismatches were more tolerated near the 3' end than the 5' end of the antisense strand. These findings reveal an effective target for CVB3 silencing and provide a new possibility for antiviral intervention.  相似文献   

14.
M A Beck  S M Tracy 《Journal of virology》1989,63(10):4148-4156
Splenocytes taken from mice inoculated with coxsackievirus B3 (CVB3) (Nancy) developed an in vitro proliferative response against CVB3 antigen. This response could not be detected earlier than 8 days postinoculation but could be detected up to 28 days after exposure to CB3. CVB3-sensitized splenocytes responded not only to the CVB3 antigen but to other enteroviruses as well. This response was found to be enterovirus specific in that no response was detected to a non-enteroviral picornavirus, encephalomyocarditis virus, or to an unrelated influenza virus. The generation of a splenocyte population capable of responding to an enterovirus group antigen(s) was not limited to inoculation of mice with CVB3, as similar responses were generated when mice were inoculated with CVB2. Cell subset depletions revealed that the major cell type responding to the enterovirus group antigen(s) was the CD4+ T cell. Current evidence suggests that the group antigen(s) resides in the structural proteins of the virus, since spleen cells from mice inoculated with a UV-inactivated, highly purified preparation of CVB3 virions also responded in vitro against enteroviral antigens.  相似文献   

15.
Viruses of the order Mononegavirales encompass life-threatening pathogens with single-stranded segmented or nonsegmented negative-strand RNA genomes. The RNA genomes are characterized by highly conserved sequences at the extreme untranslated 3' and 5' termini that are most important for virus infection and viral RNA synthetic processes. The 3' terminal genome regions of negative-strand viruses such as vesicular stomatitis virus, Sendai virus, or influenza virus contain a high number of conserved U and G nucleotides, and synthetic oligoribonucleotides encoding such sequences stimulate sequence-dependent cytokine responses via TLR7 and TLR8. Immune cells responding to such sequences include NK cells, NK/T cells, plasmacytoid, and myeloid dendritic cells, as well as monocytes and B cells. Strong Th1 and pro-inflammatory cytokine responses are also induced upon in vivo application of oligoribonucleotides. It appears possible that the presence of highly conserved untranslated terminal regions in the viral genome fulfilling fundamental functions for the viral replication may enable the host to induce directed innate immune defense mechanisms, by allowing pathogen detection through essential RNA regions that the virus cannot readily mutate.  相似文献   

16.
S Todd  J S Towner  D M Brown    B L Semler 《Journal of virology》1997,71(11):8868-8874
The genomic RNA 3' noncoding region is believed to be a major cis-acting molecular genetic determinant for regulating picornavirus negative-strand RNA synthesis by promoting replication complex recognition. We report the replication of two picornavirus RNAs harboring complete deletions of the genomic RNA 3' noncoding regions. Our results suggest that while specific 3'-terminal RNA sequences and/or secondary structures may have evolved to promote or regulate negative-strand RNA synthesis, the basic mechanism of replication initiation is not strictly template specific and may rely primarily upon the proximity of newly translated viral replication proteins to the 3' terminus of template RNAs within tight membranous replication complexes.  相似文献   

17.
18.
B Hsue  P S Masters 《Journal of virology》1997,71(10):7567-7578
The 3' untranslated region (UTR) of the positive-sense RNA genome of the coronavirus mouse hepatitis virus (MHV) contains sequences that are necessary for the synthesis of negative-strand viral RNA as well as sequences that may be crucial for both genomic and subgenomic positive-strand RNA synthesis. We have found that the entire 3' UTR of MHV could be replaced by the 3' UTR of bovine coronavirus (BCV), which diverges overall by 31% in nucleotide sequence. This exchange between two viruses that are separated by a species barrier was carried out by targeted RNA recombination. Our results define regions of the two 3' UTRs that are functionally equivalent despite having substantial sequence substitutions, deletions, or insertions with respect to each other. More significantly, our attempts to generate an unallowed substitution of a particular portion of the BCV 3' UTR for the corresponding region of the MHV 3' UTR led to the discovery of a bulged stem-loop RNA secondary structure, adjacent to the stop codon of the nucleocapsid gene, that is essential for MHV viral RNA replication.  相似文献   

19.
Echovirus 22 is an atypical enterovirus   总被引:14,自引:3,他引:11       下载免费PDF全文
Although echovirus 22 (EV22) is classified as an enterovirus in the family Picornaviridae, it is atypical of the enterovirus paradigm, typified by the polioviruses and the coxsackie B viruses. cDNA reverse transcribed from coxsackievirus B3 (CVB3) RNA does not hybridize to genomic RNA of EV22, and conversely, cDNA made to EV22 does not hybridize to CVB3 genomic RNA or to molecular clones of CVB3 or poliovirus type 1. EV22 cDNA does not hybridize to viral RNA of encephalomyocarditis virus or to a molecular clone of Theiler's murine encephalomyelitis virus, members of the cardiovirus genus. The genomic RNA of EV22 cannot be detected by the polymerase chain reaction using generic enteroviral primers. EV22 does not shut off host cell protein synthesis, and the RNA of EV22 is efficiently translated in vitro in rabbit reticulocyte lysates. Murine enterovirus-immune T cells recognize and proliferate against EV22 as an antigen in vitro, demonstrating that EV22 shares an epitope(s) common to enteroviruses but not found among other picornaviruses.  相似文献   

20.
Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5' end) formed at the 5' end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5'-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5'-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5'-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5'-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5' end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3' end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5' end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号