首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
区域生态安全格局:概念与理论基础   总被引:113,自引:13,他引:113  
提出区域生态安全格局概念的提出 ,适应了生态系统恢复和生物多样性保护的发展需求。针对区域生态环境问题 ,通过干扰排除以及空间格局规划和管理 ,能够保护和恢复生物多样性 ,维持生态系统结构、功能和过程的完整性 ,实现对区域生态环境问题的有效控制和持续改善。区域生态安全格局的研究对象具有针对性、研究尺度具有区域性、研究问题具有系统性、研究手段具有主动性。它强调区域尺度的生物多样性保护、退化生态系统恢复及其空间合理配置、生态系统健康的维持、景观生态格局的优化、以及对社会经济发展需求的满足。它更加强调格局与过程安全及其整体集成 ,将生态系统管理对策落实到具体的空间地域上 ,实现管理效果的直观可视。相关理论 ,景观生态学、干扰生态学、保护生物学、恢复生态学、生态经济学、生态伦理学、和复合生态系统理论等为其提供了坚实的理论基础。区域生态安全格局不存在一个固定标准 ,人类对生态系统服务功能需求的不断变化是生态系统管理的根本原因。实现区域生态安全不但要以社会、经济、文化、道德、法律、和法规为手段 ,更要以其不断发展对生态系统服务功能的新需求为目标逐步进行。区域生态安全格局研究对于解决区域生态环境问题具有不可替代的作用 ,具有广阔应用前景。  相似文献   

2.
区域生态安全格局研究进展   总被引:17,自引:10,他引:17  
刘洋  蒙吉军  朱利凯 《生态学报》2010,30(24):6980-6989
如何构建一个安全的区域生态格局,对土地可持续利用和区域生态安全有重要意义。区域生态安全格局的构建需要多学科的综合、多角度的分析和多种实现手段的结合,一般从景观格局优化、土地资源优化配置和景观恢复等途径入手,构建结构合理、功能高效、关系协调的区域生态安全模式。在分析国内外相关研究进展的基础上,对区域生态安全格局构建在数量优化、空间优化和综合优化等方法进行了总结,在此基础上提出了构建区域生态安全格局的思路:区域生态现状评价、情景预案与目标设定、区域生态安全格局设计、方案实施及其效果评价、方案调整与管理。未来区域生态安全格局研究的趋势表现为:空间优化模型的进一步改进;区域生态安全标准量化的探索;注重公众参与机制和不同组织水平利益相关者的协调。  相似文献   

3.
4.
Habitat restoration encompasses a broad range of activities, emphasizing very different issues, goals, and approaches depending on the operational definition of ‘restoration’. This is particularly true for many shellfish (molluscan) dominated systems (e.g. oyster reefs, mussel beds, vermetid gastropod reefs). In contrast to other well-studied biogenic habitats, such as seagrasses, mangroves, or salt marshes, bivalves are directly consumed as a resource. Hence resource extraction has direct consequences for habitat health. Restoration objectives have typically included reduction of public health risks through improved water quality to increase harvest. Restoration or enhancement of populations of commercially exploited shellfish depressed by overharvesting and/or reduced environmental quality remains the principal motivation behind most shellfish ‘restoration’ efforts. Direct and indirect ecosystem services (e.g. filtering capacity, benthic–pelagic coupling, nutrient dynamics, sediment stabilization, provision of habitat, etc.) derived from oyster habitat have been largely ignored or underestimated. Only recently, the restoration of lost ecological function associated with shellfish communities has been included in our discussions and related research examining habitat development and function through a scientific approach. The former area has been reviewed extensively and will not be our focus here. In this review, we examine some of the restoration efforts made in the name of fisheries enhancement, address their effectiveness, and discuss some of the issues associated with realizing the broader goal of ecological restoration. We note the importance of linking success criteria to specific goals and make the case for a greater need in clarifying the ecological functions of shellfish and shellfish habitats. We recognize the limitations of existing datasets and summarize ongoing attempts to address oyster habitat restoration throughout the broad geographic distribution of the American oyster, Crassostrea virginica (Gmelin). In many ways this topic parallels the ongoing debate over ‘attraction versus production’ associated with artificial reef management. We consider how local conditions (e.g. tidal range, bottom topography, turbidity, salinity) and resulting habitat traits affect restoration strategies. We also discuss the underappreciated value of shellfish populations from those areas designated as closed to harvesting due to their intrinsic worth as habitat/larval reserves. The necessity of ecosystem (adaptive) management strategies emerges from this discussion. Finally, this overview supports our contention that shellfish habitat should be included in discussions of ‘essential fish habitats’ (or EFH).  相似文献   

5.
恢复生态学焦点问题   总被引:53,自引:9,他引:53  
彭少麟  陆宏芳 《生态学报》2003,23(7):1249-1257
就恢复生态学的概念、近期的发展趋势与前沿命题、传统生态学理论在生态恢复过程中的应用及恢复生态学的社会性等核心问题展开论述。恢复生态学是一门年轻的学科,迄今尚无统一的定义。代表性的有3方面的学术观点。第1种强调受损的生态系统要恢复到理想的状态;第2种强调其应用生态学过程;第3种强调生态整合性恢复。笔者认为,恢复生态学是研究生态系统退化的原因、退化生态系统恢复与重建的技术与方法、过程与机理的科学。从近年的国际恢复生态学大会来看,恢复生态学研究近期主要有3个方面的发展趋势。一是强调自然恢复与社会、人文的耦合。认为恢复生态是全球性的,不只是自然的过程,应有全社会的支持,包括政治、经济和人文的介入。二是强调无论是在地域上还是在理论上都要跨越边界。有效的生态恢复实践在地域上要求多地区甚至是多国家的合作,在理论上要求多学科的交叉与耦合。三是强调以生态系统为基点,在景观尺度表达。随着环境和经济问题的全球化,生态系统和景观尺度的恢复生态学研究引起了越来越多的关注。2004年第15届国际恢复生态学大会的会议主题已定为:恢复、景观与设计。在当前研究趋势的基础上,提出了恢复生态学当前研究的6个前沿命题:恢复生态学的学科理论框架研究、恢复生态系统的功益研究、生物多样性在生态恢复中的作用研究、生态恢复对全球变化的响应研究、生态恢复立法研究和生态恢复与社会、经济的整合性研究。退化生态系统的恢复与重建是一项十分复杂的系统工程,尤其需要生态学理论的指导。多数生态学理论已被应用于恢复生态学的研究与实践。结合实例,着重阐述了生态系统演替理论在生态恢复中的应用。恢复生态与全球变化间的相互作用研究越来越多的引起了人们的关注,但多数研究仍停滞在定性研究阶段。在广东的恢复生态学研究表明,广东省从1986年至1998年,植被覆盖从26%到51%,新造林绿化的植被每年可吸收、固定广东省年排放CO2量的一半。人类社会与自然环境的协调可持续发展,不仅要求实现生态环境的可持续,同时亦要求实现人类社会与经济的可持续发展。这就要求生态系统的恢复与重建必须同时实现生态、经济与社会效率的三重优化。中国科学院华南植物研究所生态中心在中国热带、南亚热带进行的退化生态系统的恢复与重建研究历时30余年,所产生的显著的经济和社会效益,在各个实验站点均已有所反映。  相似文献   

6.
恢复生态学研究的一些基本问题探讨   总被引:180,自引:13,他引:180  
对恢复生态学的研究概况、基本概念、内涵与研究内容以及生态恢复的目标、原则、程序与技术进行了分析与探讨。指出恢复生态学应加强基础理论研究(包括生态系统的演替理论及干扰条件下生态系统的受损过程与响应机制研究等)和应用技术研究(包括土壤、水体、大气和植被恢复技术、生物多样性保护技术以及生态系统的组装与集成技术等).生态恢复与重建是指根据生态学原理,通过一定的生物、生态以及工程的技术,人为地切断生态系统退化的主导因子和过程,调整和优化系统内部及其与外界的物质、能量和信息的流动过程及其时空秩序,使生态系统的结构、功能和生态学潜力尽快地成功地恢复到原有的乃至更高的水平。  相似文献   

7.
旅游生态学研究进展   总被引:3,自引:1,他引:2  
张香菊  钟林生 《生态学报》2019,39(24):9396-9407
作为生态学和旅游学相交叉的一门新兴分支学科,旅游生态学关注旅游发展中的生态环境问题,以生态学原理指导旅游生态系统管理,是促进旅游业可持续发展的重要理论支撑。论文采用引文可视化分析软件CiteSpace5.3和文献阅读相结合的方法分析旅游生态学研究的国际进展。分析发现,文献数量在进入21世纪后快速增长,文献来源地集中在北美和欧洲国家,研究方法呈现多学科综合性和最新科学技术成果应用及时等特点,研究内容主要集中在旅游活动的生态环境影响、旅游生态系统管理和旅游可持续发展的测度及实现途径3个方面。基于国际进展的分析,论文最后提出我国旅游生态学研究应在学科的基础理论、旅游影响的系统性和持续性、旅游生态修复、旅游开发活动的生态环境影响、生态环境变化对旅游业发展的影响和本土性旅游生态系统管理方法等方面加强。  相似文献   

8.
修晨  肖荣波  陈三雄  张晖 《生态学报》2020,40(23):8377-8391
通过总结粤港澳大湾区、东京湾区和旧金山湾区等国内外主要湾区的生态系统特征、生态修复理论和实践研究进展,在辨析生态修复概念内涵的基础上,基于Meta-Analysis及综合分析方法,分析了生态系统退化机制及驱动因子,归纳总结湾区生态修复的主要理论基础、技术模式及案例。结果表明:(1)国内外三大主要湾区的生态系统特征为森林占比最高,其次是农田和草地占比,城镇占比第三。森林一般分布在湾区外围,城镇分布在湾区内核河口三角洲附近。(2)湾区生态修复理论包括以恢复生态学、景观生态学和复合生态系统生态学为基础的三种修复理论,生态修复的类别分为补救修复、改善修复、生态恢复和复垦等。(3)湾区生态修复技术模式包括主动修复、被动修复和重建等三类技术模式。在总结梳理生态修复理论和技术模式的基础上,结合当前国内生态修复存在问题,本文提出我国和广东省开展生态修复实践的建议和展望,以期为粤港澳大湾区生态修复提供一定的理论指导。  相似文献   

9.
王白雪  程维明  宋珂钰  李浩 《生态学报》2022,42(11):4334-4348
生态地貌学作为一个“新兴”的跨学科的概念,受到地貌学家、生态学家及政策制定者的日益关注。地貌在控制许多生态系统过程中起着基础性的作用,而生态系统又可以对许多地貌形态和地貌过程产生深远的影响。过去几十年,在地貌学和生态系统生态学的交叉点上开展了大量的研究。通过梳理地貌学和生态系统生态学相似的发展历程,讨论了两个学科相结合的必要性;归纳了两者相结合的研究现状;总结了两个学科融合研究过程中存在的问题;提出未来需要进一步加强对地貌过程与生态过程相互作用的研究,并将生态地貌学与现行生态保护与生态修复建设及相关政策有机结合,促进生态地貌学的有序和可持续发展。正确认识地球的地貌形态与生态系统之间的关系,有助于拓展地貌学与生态系统生态学的研究尺度,促进学科体系发展;深入研究生态地貌学,对于维持生态平衡,保护生态多样性及增强未来对生态系统的管理和恢复都有重要意义。  相似文献   

10.
11.
Available evidence suggests that research in terrestrial restoration ecology has been dominated by the engineering and botanical sciences. Because restoration science is a relatively young discipline in ecology, the theoretical framework for this discipline is under development and new theoretical offerings appear regularly in the literature. In reviewing this literature, we observed an absence of in‐depth discussion of how soils, and in particular the ecology of soils, can be integrated into the developing theory of restoration science. These observations prompted us to assess the current role of soil ecological knowledge in restoration research and restoration practice. Although soils are universally regarded as critical to restoration success, and much research has included manipulations of soil variables, we found that better integration of soil ecological principles could still contribute much to the practice of ecosystem restoration. Here we offer four potential points of departure for increased dialog between restoration ecologists and soil ecologists. We hope to encourage the view that soil is a complex, heterogeneous, and vital entity and that adoption of this point of view can positively affect restoration efforts worldwide.  相似文献   

12.
河岸带生态系统退化机制及其恢复研究进展   总被引:25,自引:3,他引:22  
恢复和重建自然和人为干扰导致的退化河岸带生态系统是目前恢复生态学、流域生态学等学科研究的重要内容之一.对河岸带生态系统的干扰表现在河流水文特征改变、河岸带直接干扰和流域尺度干扰3个方面,分别具有不同的影响机制.河流水文特征改变通过改变河岸土壤湿度、氧化还原电位、生物生存环境以及沉积物传输规律对河岸带生态系统产生影响;河岸带直接干扰通过人类活动及外来物种入侵而直接影响河岸带植被多样性;流域尺度干扰则主要表现在河道刷深、河道淤积、河岸带地下水位降低和河流冲刷过程改变等.河岸带生态恢复评价对象包括河岸带生态系统各要素,评价指标已从单一的生态指标转向综合性指标.河岸带生态恢复应在景观或者流域尺度上进行考虑,识别对其影响的生物和物理过程以及导致其退化的干扰因子,通过植被重建与水文调控来进行.扩展研究尺度和研究对象及采用多学科的研究方法将是今后相关研究中的重要问题.  相似文献   

13.
Restoration ecology is a young academic field, but one with enough history to judge it against past and current expectations of the science's potential. The practice of ecological restoration has been identified as providing ideal experimental settings for tests of ecological theory; restoration was to be the 'acid test' of our ecological understanding. Over the past decade, restoration science has gained a strong academic foothold, addressing problems faced by restoration practitioners, bringing new focus to existing ecological theory and fostering a handful of novel ecological ideas. In particular, recent advances in plant community ecology have been strongly linked with issues in ecological restoration. Evolving models of succession, assembly and state-transition are at the heart of both community ecology and ecological restoration. Recent research on seed and recruitment limitation, soil processes, and diversity–function relationships also share strong links to restoration. Further opportunities may lie ahead in the ecology of plant ontogeny, and on the effects of contingency, such as year effects and priority effects. Ecology may inform current restoration practice, but there is considerable room for greater integration between academic scientists and restoration practitioners.  相似文献   

14.
包庆德  张秀芬 《生态学报》2013,33(24):7623-7629
2013年是“现代生态学之父”美国生态学家奥德姆诞辰100周年。奥德姆的《生态学基础》一书对生态学从传统向现代转换具有积极的推进作用,主要表现在:提升了生态科学的量化水平,促成了生态系统生态学体系的诞生;倡导了生态学与经济学等社会科学的融合,丰富了生态经济学与生态系统服务功能研究;延展了生态学的应用尺度,为社会的生产变革和绿色运动提供了指导。奥德姆的生态学理论中诸如以能量分析为主导的生态系统分析方法还有待完善、生态系统方面较少考虑进化维度,衡量能量质量高低的能值方法的科学性有改善的空间等,但这都无碍他成为世界上最杰出的生态学家之一。  相似文献   

15.
In 1987, Bradshaw proposed that ecological restoration is the ultimate “acid test” of our understanding the functioning of ecosystems ( Bradshaw 1987 ). Although this concept is widely supported academically, how it can be applied by restoration practitioners is still unclear. This is an issue not limited to Bradshaw’s acid test, but moreover, reflects a general difficulty associated with the polarization between conceptual restoration (restoration ecology) and practical restoration (ecological restoration), where each has functioned to certain degree in isolation of the other. Outside of the more obvious pragmatic reasons for the relative independence between ecological restoration and restoration ecology, we propose that a more contentious explanation is that the approach taken toward understanding ecosystem development in restoration ecology is tangential to what actually takes place in ecological restoration. Current paradigms assume that the process of ecosystem development in restoration should follow the developmental trajectories suggested by classical ecological succession models. However, unlike these models, ecosystem development in restoration is, at least initially, largely manipulated by people, rather than by abiotic and biotic forces alone. There has been little research undertaken to explore how restoration activities impact upon or add to the extant ecological processes operating within a restoration site. Consequently, ecological restoration may not be so much an acid test of our understanding the functioning of ecosystems, but rather, an acid test of our understanding mutually beneficial interactions between humans and ecosystems.  相似文献   

16.
Grounded in human ecological philosophy, ecological engineering in China seeks to find an alternative way to realize sustainable development at ecosystem level through total metabolism of resources, systematic coupling of technologies and cultivation of people's behavior. Here the key is integration of ‘hardware’, ‘software’ and ‘mindware’. Eight design principles of ecological engineering based on eco-cybernetics are discussed, which fall into three categories: competition, symbiosis and self-reliance. The fundamental tasks of ecological engineering are to develop a sustainable ecosystem through the integrative planning of its structure, function and processes by encouraging totally functioning technology, systematically responsible institutions and ecologically vivid culture. A campaign of ecological engineering development in China is introduced, including 29 national comprehensive experimental communities for sustainable development, 51 pilot studies of eco-county development, and 100 ecological demonstration districts. Some fruitful theoretical and applied results have been gained and the case of Dafeng eco-county development is introduced.  相似文献   

17.
  1. Restoration ecology has historically focused on reconstructing communities of highly visible taxa while less visible taxa, such as invertebrates and microbes, are ignored. This is problematic as invertebrates and microbes make up the vast bulk of biodiversity and drive many key ecosystem processes, yet they are rarely actively reintroduced following restoration, potentially limiting ecosystem function and biodiversity in these areas.
  2. In this review, we discuss the current (limited) incorporation of invertebrates and microbes in restoration and rewilding projects. We argue that these groups should be actively rewilded during restoration to improve biodiversity, ecosystem function outcomes, and highlight how they can be used to greater effect in the future. For example, invertebrates and microbes are easily manipulated, meaning whole communities can potentially be rewilded through habitat transplants in a practice that we refer to as “whole‐of‐community” rewilding.
  3. We provide a framework for whole‐of‐community rewilding and describe empirical case studies as practical applications of this under‐researched restoration tool that land managers can use to improve restoration outcomes.
  4. We hope this new perspective on whole‐of‐community restoration will promote applied research into restoration that incorporates all biota, irrespective of size, while also enabling a better understanding of fundamental ecological theory, such as colonization and competition trade‐offs. This may be a necessary consideration as invertebrates that are important in providing ecosystem services are declining globally; targeting invertebrate communities during restoration may be crucial in stemming this decline.
  相似文献   

18.
A shift from traditional engineering approaches to ecologically-based techniques will require changing societal values regarding ‘how and what’ is defined as engineering and design. Non-human species offer many ecological engineering examples that are often beneficial to ecosystem function and other biota. For example, organisms known as ‘ecosystem engineers’ build, modify, and destroy habitat in their quest for food and survival. Similarly, ‘keystone species’ have greater impacts on community or ecosystem function than would be predicted from their abundance. The capacity of these types of organisms to affect ecosystems is great. They exert controlling influences over ecosystems and communities by altering resource allocation, creating habitats and modifying relative competitive advantages.Species’ effects in ecosystems, although context-dependent, can be evaluated as ‘beneficial’ or ‘detrimental’. The evaluation depends on whether effects on other species or ecosystem function are more or less desirable from a given perspective. Organisms with beneficial impacts facilitate the presence of other species, employ efficient nutrient cycling, and are sometimes characterized by specific mutualisms. In contrast, many cases of detrimental engineering are found from introduced (i.e., exotic) species and are characterized by a loss of species richness, a lack of nutrient retention and the degradation of ecosystem integrity. Species’ impacts on ecosystems and community traits have been quantified in ecological studies and can be used similarly to understand, design and model human engineering structures and impacts on the landscape. Emulation of species with beneficial impacts on ecosystems can provide powerful guidance to the goals of ecological engineering. Using role model organisms that have desirable effects on species diversity and ecosystem function will be important in developing alternatives to traditional engineering practices.  相似文献   

19.
地下生态系统对生态恢复的影响   总被引:1,自引:0,他引:1  
周庆  欧晓昆  张志明 《生态学杂志》2007,26(9):1445-1453
生态系统破坏与退化的加剧使生态恢复成为全球性的挑战课题,近年来生态恢复的研究已逐渐由地上向地下部分转移,地下部分对生态系统退化所起的作用、机理和过程已倍受关注。本文通过探讨恢复生态学的关键概念,从土壤、地下水循环、生物系统3个方面探讨了地下生态系统对生态恢复的作用机理和反馈机制。针对目前的研究现状,指出地下生态系统研究中存在的问题,并提出今后需要深入研究的几个方向:1)生态系统退化程度的诊断及其标准;2)基于诊断标准,针对不同退化生态系统类型选定恢复的目标植物群落,如何改善土壤性质,确定土壤性质的改善程度;确定地下水位及土壤含水量的阈值;如何有效选择、引入和接种土壤生物;3)生态系统地上和地下部分整合及恢复过程中监测指标的确定。  相似文献   

20.
Biological insurance theory predicts that, in a variable environment, aggregate ecosystem properties will vary less in more diverse communities because declines in the performance or abundance of some species or phenotypes will be offset, at least partly, by smoother declines or increases in others. During the past two decades, ecology has accumulated strong evidence for the stabilising effect of biodiversity on ecosystem functioning. As biological insurance is reaching the stage of a mature theory, it is critical to revisit and clarify its conceptual foundations to guide future developments, applications and measurements. In this review, we first clarify the connections between the insurance and portfolio concepts that have been used in ecology and the economic concepts that inspired them. Doing so points to gaps and mismatches between ecology and economics that could be filled profitably by new theoretical developments and new management applications. Second, we discuss some fundamental issues in biological insurance theory that have remained unnoticed so far and that emerge from some of its recent applications. In particular, we draw a clear distinction between the two effects embedded in biological insurance theory, i.e. the effects of biodiversity on the mean and variability of ecosystem properties. This distinction allows explicit consideration of trade-offs between the mean and stability of ecosystem processes and services. We also review applications of biological insurance theory in ecosystem management. Finally, we provide a synthetic conceptual framework that unifies the various approaches across disciplines, and we suggest new ways in which biological insurance theory could be extended to address new issues in ecology and ecosystem management. Exciting future challenges include linking the effects of biodiversity on ecosystem functioning and stability, incorporating multiple functions and feedbacks, developing new approaches to partition biodiversity effects across scales, extending biological insurance theory to complex interaction networks, and developing new applications to biodiversity and ecosystem management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号