首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus Gag protein self-assembles into spherical particles, and recent reports suggest the formation of assembly intermediates during the process. To understand the nature of such assembly intermediates along with the mechanism of Gag assembly, we employed expression in Escherichia coli and an in vitro assembly reaction. When E. coli expression was performed at 37 degrees C, Gag predominantly assembled to a high order of multimer, apparently equivalent to the virus-like particles obtained following Gag expression in eukaryotic cells, through the formation of low orders of multimer characterized with a discreet sedimentation value of 60 S. Electron microscopy confirmed the presence of spherical particles in the E. coli cells. In contrast, expression at 30 degrees C resulted in the production of only the 60 S form of Gag multimer, and crescent-shaped structures or small patches with double electron-dense layers were accumulated, but no complete particles. In vitro assembly reactions using purified Gag protein, when performed at 37 degrees C, also produced the high order of Gag multimers with some 60 S multimers, whereas the 30 degrees C reaction produced only the 60 S multimers. However, when the 60 S multimers were cross-linked so as not to allow conformational changes, in vitro assembly reactions at 37 degrees C did not produce any higher order of multimers. ATP depletion did not halt Gag assembly in the E. coli cells, and the addition of GroEL-GroES to in vitro reactions did not facilitate Gag assembly, indicating that conformational changes rather than protein refolding by chaperonins, induced at 37 degrees C, were solely responsible for the Gag assembly observed here. We suggest that Gag assembles to a capsid through the formation of the 60 S multimer, possibly a key intermediate of the assembly process, accompanied with conformational changes in Gag.  相似文献   

2.
Anderson EC  Lever AM 《Journal of virology》2006,80(21):10478-10486
The full-length viral RNA of human immunodeficiency virus type 1 (HIV-1) functions both as the mRNA for the viral structural proteins Gag and Gag/Pol and as the genomic RNA packaged within viral particles. The packaging signal which Gag recognizes to initiate genome encapsidation is in the 5' untranslated region (UTR) of the HIV-1 RNA, which is also the location of translation initiation complex formation. Hence, it is likely that there is competition between the translation and packaging processes. We studied the ability of Gag to regulate translation of its own mRNA. Gag had a bimodal effect on translation from the HIV-1 5' UTR, stimulating translation at low concentrations and inhibiting translation at high concentrations in vitro and in vivo. The inhibition was dependent upon the ability of Gag to bind the packaging signal through its nucleocapsid domain. The stimulatory activity was shown to depend on the matrix domain of Gag. These results suggest that Gag controls the equilibrium between translation and packaging, ensuring production of enough molecules of Gag to make viral particles before encapsidating its genome.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses harbor short peptide motifs in Gag that promote the release of infectious virions. These motifs, known as late assembly (L) domains, recruit a cellular budding machinery that is required for the formation of multivesicular bodies (MVBs). The primary L domain of HIV-1 maps to a PTAP motif in the p6 region of Gag and engages the MVB pathway by binding to Tsg101. Additionally, HIV-1 p6 harbors an auxiliary L domain that binds to the V domain of ALIX, another component of the MVB pathway. We now show that ALIX also binds to the nucleocapsid (NC) domain of HIV-1 Gag and that ALIX and its isolated Bro1 domain can be specifically packaged into viral particles via NC. The interaction with ALIX depended on the zinc fingers of NC, which mediate the specific packaging of genomic viral RNA, but was not disrupted by nuclease treatment. We also observed that HIV-1 zinc finger mutants were defective for particle production and exhibited a similar defect in Gag processing as a PTAP deletion mutant. The effects of the zinc finger and PTAP mutations were not additive, suggesting a functional relationship between NC and p6. However, in contrast to the PTAP deletion mutant, the double mutants could not be rescued by overexpressing ALIX, further supporting the notion that NC plays a role in virus release.  相似文献   

4.
5.
Ubiquitin is important for the release of human immunodeficiency virus type 1 (HIV-1) and several other retroviruses, but the functional significance of Gag ubiquitination is unknown. To address this problem, we decided to analyze Gag ubiquitination in detail. A low percentage of the HIV-1 p6 protein has previously been shown to be ubiquitinated, and published mutagenesis data suggested that Gag ubiquitination is largely lost upon mutation of the two lysine residues in p6. In this study, we show that Gag proteins lacking the p6 domain or the two lysine residues within p6 are ubiquitinated at levels comparable to those of the wild-type Gag protein. We detected monoubiquitinated forms of the matrix (MA), capsid (CA), and nucleocapsid (NC) proteins in mature virus preparations. Protease digestion of Gag polyproteins extracted from immature virions indicated that ubiquitinated MA, CA, and possibly NC are as abundant as ubiquitinated p6. The HIV-1 late-domain motifs PTAP and LRSLF were not required for Gag ubiquitination, and mutation of the PTAP motif even resulted in an increase in the amount of Gag-Ub conjugates detected. Finally, at steady state, ubiquitinated Gag proteins were not enriched in either membrane-associated or virus-derived Gag fractions. In summary, these results indicate that HIV-1 Gag can be monoubiquitinated in all domains and that ubiquitination of lysine residues outside p6 may thus contribute to viral release and/or infectivity.  相似文献   

6.
7.
8.
The nucleocapsid (NC) domains of retrovirus precursor Gag (PrGag) proteins play an essential role in virus assembly. Evidence suggests that NC binding to viral RNA promotes dimerization of PrGag capsid (CA) domains, which triggers assembly of CA N-terminal domains (NTDs) into hexamer rings that are interconnected by CA C-terminal domains. To examine the influence of dimerization on human immunodeficiency virus type 1 (HIV-1) Gag protein assembly in vitro, we analyzed the assembly properties of Gag proteins in which NC domains were replaced with cysteine residues that could be linked via chemical treatment. In accordance with the model that Gag protein pairing triggers assembly, we found that cysteine cross-linking or oxidation reagents induced the assembly of virus-like particles. However, efficient assembly also was observed to be temperature dependent or required the tethering of NTDs. Our results suggest a multistep pathway for HIV-1 Gag protein assembly. In the first step, Gag protein pairing through NC-RNA interactions or C-terminal cysteine linkage fosters dimerization. Next, a conformational change converts assembly-restricted dimers or small oligomers into assembly-competent ones. At the final stage, final particle assembly occurs, possibly through a set of larger intermediates.  相似文献   

9.
The Vif protein of human immunodeficiency virus type 1 is required for productive replication in peripheral blood lymphocytes. Previous reports suggest that vif-deleted viruses are limited in replication because of a defect in the late steps of the virus life cycle. One of the remaining questions is to determine whether the functional role of Vif involves a specific interaction with virus core proteins. In this study, we demonstrate a direct interaction between Vif and the Pr55Gag precursor in vitro as well as in infected cells. No interaction is observed between Vif and the mature capsid protein. The Pr55Gag-Vif interaction is detected (i) in the glutathione S-transferase system, with in vitro-translated proteins demonstrating a critical role of the NC p7 domain of the Gag precursor; (ii) with proteins expressed in infected cells; and (iii) by coimmunoprecipitation experiments. Deletion of the C-terminal 22 amino acids of Vif abolishes its interaction with the Pr55Gag precursor. Furthermore, point mutations in the C-terminal domain of Vif which have been previously shown to abolish virus infectivity and binding to cell membranes dramatically decrease the Gag-Vif interaction. These results suggest that the interaction between Vif and the pr55Gag precursor is a critical determinant of Vif function.  相似文献   

10.
11.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 96-amino-acid protein that is found associated with the HIV-1 virion. Vpr induces cell cycle arrest at the G(2)/M phase of the cell cycle, and this arrest is followed by apoptosis. We examined the mechanism of Vpr-induced apoptosis and found that HIV-1 Vpr-induced apoptosis requires the activation of a number of cellular cysteinyl aspartate-specific proteases (caspases). We demonstrate that ectopic expression of anti-apoptotic viral proteins, which inhibit caspase activity, and addition of synthetic peptides, which represent caspase cleavage sites, can inhibit Vpr-induced apoptosis. Finally, inhibition of caspase activity and subsequent inhibition of apoptosis results in increased viral expression, suggesting that therapeutic strategies aimed at reducing Vpr-induced apoptosis in vivo require careful consideration.  相似文献   

12.
Multivesicular bodies (MVBs) are cholesterol-enriched organelles formed by the endocytic pathway. The topology of vesicle formation in MVBs is identical to that of retroviral budding from the plasma membrane, and budding of human immunodeficiency virus type 1 (HIV-1) into MVBs in macrophages has recently been visualized. The Gag proteins from HIV-1, as well as many other retroviruses, contain short motifs that mediate interactions with MVBs and other endocytic components, suggesting that Gag proteins directly interface with the endocytic pathway. Here, we show that HIV-1 Gag contains an internalization signal that promotes endocytosis of a chimeric transmembrane fusion protein. Mutation of this motif within Gag strongly inhibits virus-like particle production. Moreover, wild-type Gag, but not the internalization-defective mutation, can be induced to accumulate within CD63-positive MVBs by treatment of cells with U18666A, a drug that redistributes cholesterol from the plasma membrane to MVBs. We propose that HIV-1 Gag contains a signal that promotes interaction with the cellular endocytic machinery and that the site of particle production is regulated by the subcellular distribution of cholesterol.  相似文献   

13.
Ubiquitin is important for the release of human immunodeficiency virus 1 (HIV-1) and several other retroviruses. All major domains of the HIV-1 Gag protein are monoubiquitinated, but the modifying machinery and the function of HIV-1 Gag ubiquitination remain unclear. Here, we show that the induction of a late budding arrest by mutation of the HIV-1 PTAP motif or by specific inhibition of selected ESCRT components leads to an increase of Gag-ubiquitin conjugates in cells, which coincides with an accumulation of detergent-insoluble, multimerized Gag at the plasma membrane. Membrane flotation experiments revealed that ubiquitinated Gag is highly enriched in membrane-bound fractions. Based on these findings, we propose that a blocking of virus release results in increased Gag ubiquitination as a consequence of its prolonged membrane association. Consistent with this, ubiquitination of a membrane-binding-defective (G2A)Gag mutant was dramatically reduced and the ubiquitination levels of truncated Gag proteins correlated with their abilities to bind to membranes. We therefore propose that membrane association and multimerization of HIV-1 Gag proteins, rather than a specific motif within Gag, trigger recognition by the cellular ubiquitination machinery.  相似文献   

14.
Ono A  Demirov D  Freed EO 《Journal of virology》2000,74(11):5142-5150
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.  相似文献   

15.
About the relationship between retroviral genome packaging and translation, three possible modes (random-, trans-, and cis-) of packaging process could be assumed. In this report, we developed an assay system based on the RT-qPCR to measure the packaging efficiency of primate lentiviruses. With this system, we analyzed the genome packaging modes of primate lentiviruses such as HIV-1, 2, SIVmac and SIVagm. The data suggested that the modes of all viruses analyzed were very similar. In addition, we observed that the Gag-AUG sequences of them played important roles for maintaining efficient packaging, other than the initiation of translation.  相似文献   

16.
17.
In vitro assembly of human immunodeficiency virus type 1 Gag protein.   总被引:7,自引:0,他引:7  
Retroviral Gag protein is sufficient to produce Gag virus-like particles when expressed in higher eukaryotic cells. Here we describe the in vitro assembly reaction of human immunodeficiency virus Gag protein, which consists of two sequential steps showing the optimal conditions for each reaction. Following expression and purification, Gag protein lacking only the C-terminal p6 domain was present as a monomer (50 kDa) by velocity sedimentation analysis. Initial assembly of the Gag protein to 60 S intermediates occurred by dialysis at 4 degrees C in low salt at neutral to alkaline pH. However, higher order of assembly required incubation at 37 degrees C and was facilitated by the addition of Mg(2+). Prolonged incubation under these conditions produced complete assembly (600 S), equivalent to Gag virus-like particles obtained from Gag-expressing cells. Neither form disassembled by treatment with nonionic detergent, suggesting that correct assembly might occur in vitro. Electron microscopic observation confirmed that the 600 S assembly products were spherical particles similar to authentic immature human immunodeficiency virus particles. The latter assembly stage but not the former was accelerated by the addition of RNA although not inhibited by RNaseA treatment. These results suggest that Gag protein alone assembles in vitro, but that additional RNA facilitates the assembly reaction.  相似文献   

18.
The structural precursor polyprotein of human immunodeficiency virus type 1, Pr55(gag), contains a proline-rich motif (PTAP) called the "late domain" in its C-terminal p6 region that directs release of mature virus-like particles (VLPs) from the plasma membranes of gag-transfected COS-1 cells. The motif binds Tsg101 (vacuolar protein-sorting protein 23, or Vps23), which functions in endocytic trafficking. Here, we show that accumulation of the wild-type (wt) Gag precursor in a fraction of COS-1 cytoplasm enriched in multivesicular bodies and small particulate components of the plasma membrane (P100) is p6 dependent. Cleavage intermediates and mature CA mainly partitioned with more rapidly sedimenting larger material enriched in components of lysosomes and early endosomes (P27), and this also was p6 dependent. Expression of truncated or full-length Tsg101 proteins interfered with VLP assembly and Gag accumulation in the P100 fraction. This correlated with reduced accumulation of Gag tagged with green fluorescent protein (Gag-GFP) at the plasma membrane and colocalization with the tagged Tsg101 in perinuclear early endosomes, as visualized by confocal microscopy. Fractionation analysis and confocal examination both indicated that the N-terminal region of Tsg101, which contains binding sites for PTAP and ubiquitin (Ub), was required for Gag trafficking to the plasma membrane. Expression of FLAG-tagged Tsg101 with a deletion in the Ub-binding pocket inhibited VLP release almost completely and to a significantly greater extent than expression of the wt tagged Tsg101 protein or Tsg101-FLAG containing a deletion in the PTAP-binding region. The results demonstrate that Gag associates with endosomal trafficking compartments and indicate that efficient release of virus particles from the plasma membrane requires both the PTAP- and Ub-binding functions of Tsg101 to recruit the cellular machinery required for budding.  相似文献   

19.
Huang Y  Kong WP  Nabel GJ 《Journal of virology》2001,75(10):4947-4951
Immunity to human immunodeficiency virus virion-like structures or a polyprotein has been examined after DNA immunization with Rev-independent expression vectors. A Gag-Pol fusion protein stimulated cytotoxic T lymphocyte and antibody responses to Gag and Pol, while a Gag-Pol pseudoparticle did not elicit substantial Pol responses. This fusion protein may be useful for AIDS vaccines.  相似文献   

20.
Hetero-oligomerization between human immunodeficiency virus type 2 (HIV-2) envelope glycoprotein (Env) truncation mutants and epitope-tagged gp160 is dependent on the presence of gp41 transmembrane protein (TM) amino acids 552 to 589, a putative amphipathic alpha-helical sequence. HIV-2 Env truncation mutants containing this sequence were also able to form cross-type hetero-oligomers with HIV-1 Env. HIV-2/HIV-1 hetero-oligomerization was, however, more sensitive to disruption by mutagenesis or increased temperature. The conservation of the Env oligomerization function of the HIV-1 and HIV-2 alpha-helical sequences suggests that retroviral TM alpha-helical motifs may have a universal role in oligomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号