首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An effective vaccine against human immunodeficiency virus (HIV) should protect against mucosal transmission of genetically divergent isolates. As a safe alternative to live attenuated vaccines, the immunogenicity and protective efficacy of a DNA vaccine containing simian immunodeficiency virus (SIV) strain 17E-Fr (SIV/17E-Fr) gag-pol-env was analyzed in rhesus macaques. Significant levels of cytotoxic T lymphocytes (CTL), but low to undetectable serum antibody responses, were observed following multiple immunizations. SIV-specific mucosal antibodies and CTL were also detected in rectal washes and gut-associated lymphoid tissues, respectively. Vaccinated and naive control monkeys were challenged intrarectally with SIV strain DeltaB670 (SIV/DeltaB670), a primary isolate whose env is 15% dissimilar to that of the vaccine strain. Four of seven vaccinees were protected from infection as determined by the inability to identify viral RNA or DNA sequences in the peripheral blood and the absence of anamnestic antibody responses postchallenge. This is the first report of mucosal protection against a primary pathogenic, heterologous isolate of SIV by using a commercially viable vaccine approach. These results support further development of a DNA vaccine for protection against HIV.  相似文献   

2.
An HIV-1 vaccine able to induce broad CD4+ and CD8+ T cell responses may provide long-term control of viral replication. In this study we directly assess the relative benefit of immunization with vaccines expressing three structural Ags (Gag, Pol, and Env), three early regulatory proteins (Rev, Tat, and Nef), or a complex vaccine expressing all six Ags. The simultaneous administration of all six Ags during vaccination resulted in Ag competition manifested by a relative reduction of CD8+ T cell and lymphoproliferative responses to individual Ags. Despite the Ag competition, vaccination with all six Ags resulted in a delay in the onset and a decrease in the extent of acute viremia after mucosal challenge exposure to highly pathogenic SIV(mac251). Reduced levels of acute viremia correlated with lower post-set point viremia and long-term control of infection. In immunized animals, virus-specific CD4+ T cell and lymphoproliferative responses were preserved during acute viremia, and the maintenance of these responses predicted the long-term virological outcome. Taken together, these results suggest that the breadth of the immune response is probably more important than high frequency responses to a limited number of epitopes. These data provide the first clear evidence of the importance of nonstructural HIV Ags as components of an HIV-1 vaccine.  相似文献   

3.
Several vaccine studies have ameliorated disease progression in simian-human immunodeficiency virus (SHIV) infections. The successes of these vaccines have been largely attributed to protective effects of cytotoxic T-lymphocyte (CTL) responses, although the precise correlates of immune protection remain poorly defined. It is now well established that vigorous CTL and antibody responses can rapidly select for viral escape variants after HIV and SIV infection. Here we suggest that viral variation analyses should be performed on viruses derived from vaccinated, SIV-, or SHIV-challenged animals as a routine component of vaccine evaluation to determine the contribution of immune responses to the success (or failure) of the vaccine regimen. To illustrate the importance of escape analysis, we show that rapid emergence of escape variants postchallenge contributed to the failure of a DNA prime/MVA boost vaccine regimen encoding SIV Tat.  相似文献   

4.
An effective vaccine for AIDS may require development of novel vectors capable of eliciting long-lasting immune responses. Here we report the development and use of replication-competent and replication-defective strains of recombinant herpes simplex virus (HSV) that express envelope and Nef antigens of simian immunodeficiency virus (SIV). The HSV recombinants induced antienvelope antibody responses that persisted at relatively stable levels for months after the last administration. Two of seven rhesus monkeys vaccinated with recombinant HSV were solidly protected, and another showed a sustained reduction in viral load following rectal challenge with pathogenic SIVmac239 at 22 weeks following the last vaccine administration. HSV vectors thus show great promise for being able to elicit persistent immune responses and to provide durable protection against AIDS.  相似文献   

5.
It is believed likely that immune responses are responsible for controlling viral load and infection. In this study, when macaques were primed with plasmid DNA encoding SIV gag and pol genes (SIVgag/pol DNA) and then boosted with replication-deficient vaccinia virus DIs recombinant expressing the same genes (rDIsSIVgag/pol), this prime-boost regimen generated higher levels of Gag-specific CD4+ and CD8+ T cell responses than did either SIVgag/pol DNA or rDIsSIVgag/pol alone. When the macaques were i.v. challenged with pathogenic simian/HIV, the prime-boost group maintained high CD4+ T cell counts and reduced plasma viral loads up to 30 wk after viral challenge, whereas the rDIsSIVgag/pol group showed only a partial attenuation of the viral infection, and the group immunized with SIVgag/pol DNA alone showed none at all. The protection levels were better correlated with the levels of virus-specific T cell responses than the levels of neutralization Ab responses. These results demonstrate that a vaccine regimen that primes with DNA and then boosts with a replication-defective vaccinia virus DIs generates anti-SIV immunity, suggesting that it will be a promising vaccine regimen for HIV-1 vaccine development.  相似文献   

6.
Three different deletion mutants of simian immunodeficiency virus (SIV) that vary in their levels of attenuation were tested for the ability to protect against mucosal challenge with pathogenic SIV. Four female rhesus monkeys were vaccinated by intravenous inoculation with SIVmac239Delta3, four with SIVmac239Delta3X, and four with SIVmac239Delta4. These three vaccine strains exhibit increasing levels of attenuation: Delta3 < Delta3X 相似文献   

7.
Bluetongue virus (BTV) belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/-)) mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+) T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.  相似文献   

8.
Cytotoxic T lymphocyte (CTL) responses are crucial for the control of human and simian immunodeficiency virus (HIV and SIV) replication. A promising AIDS vaccine strategy is to induce CTL memory resulting in more effective CTL responses post-viral exposure compared to those in natural HIV infections. We previously developed a CTL-inducing vaccine and showed SIV control in some vaccinated rhesus macaques. These vaccine-based SIV controllers elicited vaccine antigen-specific CTL responses dominantly in the acute phase post-challenge. Here, we examined CTL responses post-challenge in those vaccinated animals that failed to control SIV replication. Unvaccinated rhesus macaques possessing the major histocompatibility complex class I haplotype 90-088-Ij dominantly elicited SIV non-Gag antigen-specific CTL responses after SIV challenge, while those induced with Gag-specific CTL memory by prophylactic vaccination failed to control SIV replication with dominant Gag-specific CTL responses in the acute phase, indicating dominant induction of vaccine antigen-specific CTL responses post-challenge even in non-controllers. Further analysis suggested that prophylactic vaccination results in dominant induction of vaccine antigen-specific CTL responses post-viral exposure but delays SIV non-vaccine antigen-specific CTL responses. These results imply a significant influence of prophylactic vaccination on CTL immunodominance post-viral exposure, providing insights into antigen design in development of a CTL-inducing AIDS vaccine.  相似文献   

9.
10.
11.
Among the most effective vaccine candidates tested in the simian immunodeficiency virus (SIV)/macaque system, live attenuated viruses have been shown to provide the best protection from challenge. To investigate if preimmunization would increase the level of protection afforded by live attenuated SIVmac239Deltanef (Deltanef), macaques were given two priming immunizations of DNA encoding SIV Gag and Pol proteins, with control macaques receiving vector DNA immunizations. In macaques receiving the SIV DNA inoculation, SIV-specific cellular but not humoral responses were readily detectable 2 weeks after the second DNA inoculation. Following boosting with live attenuated virus, control of Deltanef replication was superior in SIV-DNA-primed macaques versus vector-DNA-primed macaques and was correlated with higher levels of CD8+/gamma-interferon-positive and/or interleukin-2-positive cells. Challenge with an intravenous inoculation of simian/human immunodeficiency virus (SHIV) strain SHIV89.6p resulted in infection of all animals. However, macaques receiving SIV DNA as the priming immunizations had statistically lower viral loads than control animals and did not develop signs of disease, whereas three of seven macaques receiving vector DNA showed severe CD4+ T-cell decline, with development of AIDS in one of these animals. No correlation of immune responses to protection from disease could be derived from our analyses. These results demonstrate that addition of a DNA prime to a live attenuated virus provided better protection from disease following challenge than live attenuated virus alone.  相似文献   

12.
Prior infection with a nef-deleted simian immunodeficiency virus (SIV) protects macaques not only against a homologous pathogenic SIV challenge but also against challenge with a chimeric SIV expressing a human immunodeficiency virus type 1 env gene (SHIV). Since this SHIV is itself nonpathogenic, we sought to explore the use of a nonpathogenic SHIV as a live, attenuated AIDS virus vaccine. Four cynomolgus monkeys infected for greater than 600 days with a chimeric virus composed of SIVmac 239 expressing the human immunodeficiency virus type 1 HXBc2 env, tat, and rev genes were challenged intravenously with 100 animal infectious doses of the J5 clone of SIVmac 32H, an isolate derived by in vivo passage of SIVmac 251. Three of the four monkeys became infected with SIVmac. This observation underlines the difficulty, even with a live virus vaccine, in protecting against an AIDS virus infection.  相似文献   

13.
Whereas several recent AIDS vaccine strategies have protected rhesus macaques against a pathogenic simian/human immunodeficiency virus (SHIV)(89.6P) challenge, similar approaches have provided only modest, transient reductions in viral burden after challenge with virulent, pathogenic SIV, which is more representative of HIV infection of people. We show here that priming with replicating adenovirus recombinants encoding SIV env/rev, gag, and/or nef genes, followed by boosting with SIV gp120 or an SIV polypeptide mimicking the CD4 binding region of the envelope, protects rhesus macaques from intrarectal infection with the highly pathogenic SIV(mac251). Using trend analysis, significant reductions in acute-phase and set point viremia were correlated with anti-gp120 antibody and cellular immune responses, respectively. Within immunization groups exhibiting significant protection, a subset (39%) of macaques have exhibited either no viremia, cleared viremia, or controlled viremia at the threshold of detection, now more than 40 weeks postchallenge. This combination prime-boost strategy, utilizing replication competent adenovirus, is a promising alternative for HIV vaccine development.  相似文献   

14.
Infection of pigtail macaques with SIVsmmPBj14, biological clone 3 (SIV-PBj14-bc13), produces an acute and usually fatal shock-like syndrome 7 to 14 days after infection. We used this simian immunodeficiency virus (SIV) model as a rapid and rigorous challenge to evaluate the efficacy of two SIV Env vaccine strategies. Groups of four pigtail macaques were immunized four times over a 25-week span with either a recombinant Semliki Forest virus expressing the SIV-PBj14 Env gp160 (SFV-SIVgp160) or purified recombinant SIV-PBj14 gp120 (rgp120) in SBN-1 adjuvant. Antibody titers to SIV Env developed in all immunized animals (mean peak titers prior to challenge, 1:1,700 for SFV-SIV gp 160 and 1:10,500 for rgp120), but neither neutralizing antibodies nor SIV-specific T-cell proliferative responses were detectable in any of the vaccinees. All macaques were challenged with a 100% infectious, 75% fatal dose of SIV-PBj14-bc13 at week 26. Three of four control animals died of acute SIV-PBj14 syndrome on days 12 and 13. By contrast, all four SFV-SIVgp160-immunized animals and three of the four rgp120-immunized animals were protected from lethal disease. While all virus-challenged animals became infected, symptoms of the SIV-PBj14 syndrome were more severe in controls than in vaccinees. Mean virus titers in plasma at 13 days postchallenge were approximately 10-fold lower in vaccinated than control animals. However, there was no apparent correlation between survival and levels of peripheral blood mononuclear cell-associated culturable virus, provirus load, or any antiviral immunologic parameter examined. The results indicate that while immunization with SFV-SIVgp160 and rgp120 did not protect against virus infection, these Env vaccines did lower the virus load in plasma and protect against the lethal SIV-PBj14 challenge.  相似文献   

15.
Twelve rhesus monkeys were vaccinated with SIVmac316 delta nef (lacking nef sequences), and 12 were vaccinated with SIVmac239 delta3 (lacking nef, vpr, and upstream sequences in U3). SIVmac316 and SIVmac239 differ by only eight amino acids in the envelope; these changes render SIVmac316 highly competent for replication in macrophages. Seventeen of the animals developed persistent infections with the vaccine viruses. Seven of the 24 vaccinated animals, however, developed infections that were apparently transient in nature. Six of these seven yielded virus from peripheral blood when tested at weeks 2 and/or 3, three of the seven had transient antibody responses, but none of the seven had persisting antibody responses. The 24 monkeys were challenged in groups of four with 10 rhesus monkey infectious doses of wild-type, pathogenic SIVmac251 at weeks 8, 20, and 79 following receipt of vaccine. None of the seven with apparently transient infections with vaccine virus were protected upon subsequent challenge. Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions. (i) There was a trend toward increased protection with length of time of vaccination. (ii) Solid vaccine protection was achieved by 79 weeks with the highly attenuated SIV239 delta3. (iii) Solid long-term protection was achieved in at least two animals in the absence of complete sterilizing immunity. (iv) Genetic backbone appeared to influence protective capacity; animals vaccinated with SIV239 delta3 were better protected than animals receiving SIV316 delta nef. This better protection correlated with increased levels of the replicating vaccine strain. (v) The titer of virus-neutralizing activity in serum on the day of challenge correlated with protection when measured against a primary stock of SIVmac251 but not when measured against a laboratory-passaged stock. The level of binding antibodies to whole virus by enzyme-linked immunosorbent assay also correlated with protection.  相似文献   

16.
Use of simian immunodeficiency virus for vaccine research   总被引:2,自引:0,他引:2  
Rhesus monkeys were immunized with purified, disrupted, noninfectious simian immunodeficiency virus (SIV) in adjuvant induced SIV neutralizing antibodies. Two of six previously vaccinated macaques were protected against infection when challenged with 200-1,000 animal infectious doses of uncloned, pathogenic SIV and both have remained free of signs of virus infection for 19 and 30 months. Prior vaccination appeared to be of benefit in decreasing the virus load and in delaying the onset of AIDS in animals that became infected. Nonetheless, two of four previously vaccinated monkeys that became infected following challenge eventually developed AIDS and died 505 and 538 days after infection. Thus, for a vaccine to be truly effective against AIDS, it may have to protect absolutely against initial infection.  相似文献   

17.
Recombinant strains of replication-competent rhesus monkey rhadinovirus (RRV) were constructed in which strong promoter/enhancer elements were used to drive expression of simian immunodeficiency virus (SIV) Env or Gag or a Rev-Tat-Nef fusion protein. Cultured rhesus monkey fibroblasts infected with each recombinant strain were shown to express the expected protein. Three RRV-negative and two RRV-positive rhesus monkeys were inoculated intravenously with a mixture of these three recombinant RRVs. Expression of SIV Gag was readily detected in lymph node biopsy specimens taken at 3 weeks postimmunization. Impressive anti-SIV cellular immune responses were elicited on the basis of major histocompatibility complex (MHC) tetramer staining and gamma interferon enzyme-linked immunospot (ELISPOT) assays. Responses were much greater in magnitude in the monkeys that were initially RRV negative but were still readily detected in the two monkeys that were naturally infected with RRV at the time of immunization. By 3 weeks postimmunization, responses measured by MHC tetramer staining in the two Mamu-A*01(+) RRV-negative monkeys reached 9.3% and 13.1% of all CD8(+) T cells in peripheral blood to the Gag CM9 epitope and 2.3% and 7.3% of all CD8(+) T cells in peripheral blood to the Tat SL8 epitope. Virus-specific CD8(+) T cell responses persisted at high levels up to the time of challenge at 18 weeks postimmunization, and responding cells maintained an effector memory phenotype. Despite the ability of the RRVenv recombinant to express high levels of Env in cultured cells, and despite the appearance of strong anti-RRV antibody responses in immunized monkeys, anti-Env antibody responses were below our ability to detect them. Immunized monkeys, together with three unimmunized controls, were challenged intravenously with 10 monkey infectious doses of SIVmac239. All five immunized monkeys and all three controls became infected with SIV, but peak viral loads were 1.2 to 3.0 log(10) units lower and chronic-phase viral loads were 1.0 to 3.0 log(10) units lower in immunized animals than the geometric mean of unimmunized controls. These differences were statistically significant. Anti-Env antibody responses following challenge indicated an anamnestic response in the vaccinated monkeys. These findings further demonstrate the potential of recombinant herpesviruses as preventive vaccines for AIDS. We hypothesize that this live, replication-competent, persistent herpesvirus vector could match, or come close to matching, live attenuated strains of SIV in the degree of protection if the difficulty with elicitation of anti-Env antibody responses can be overcome.  相似文献   

18.
Live attenuated simian immunodeficiency virus (SIV) is the most efficient vaccine yet developed in monkey models of human immunodeficiency virus infection. In all successful vaccine trials, attenuation was achieved by inactivating at least the nef gene. We investigated some virological and immunological characteristics of five rhesus macaques immunized with a nef-inactivated SIVmac251 molecular clone (SIVmac251Deltanef) and challenged 15 months later with the pathogenic SIVmac251 isolate. Three animals were killed 2 weeks postchallenge (p.c.) to search for the challenge virus and to assess immunological changes in various organs. The other two animals have been monitored up for 7 years p.c., with clinical and nef gene changes being noted. The animals killed showed no increase in viral load and no sign of a secondary immune response, although the challenged virus was occasionally detected by PCR. In one of the monkeys being monitored, the vaccine virus persisted and an additional deletion occurred in nef. In the other monkey that was monitored, the challenge and the vaccine (Deltanef) viruses were both detected by PCR until a virus with a hybrid nef allele was isolated 48 months p.c. This nef hybrid encodes a 245-amino-acid protein. Thus, our results show (i) that monkeys were not totally protected against homologous virus challenge but controlled the challenge very efficiently in the absence of a secondary immune response, and (ii) that the challenge and vaccine viruses may persist in a replication-competent form for long periods after the challenge, possibly resulting in recombination between the two viruses.  相似文献   

19.
Cats immunized with cells infected with a primary isolate of feline immunodeficiency virus (FIV) and fixed with paraformaldehyde were challenged with cell-free or cell-associated homologous virus obtained ex vivo. Complete protection was observed in animals challenged with cell-free virus 4 months after completion of vaccination (p.v.) or with cell-associated virus 12 months p.v. In contrast, no protection was observed in cats challenged with cell-free virus 12 or 28 months p.v. or with cell-associated virus 37.5 months p.v. Prior to the 28- and 37.5-month challenges, the animals had received a booster dose of vaccine that had elicited a robust anamnestic immune response. These results show that vaccine-induced protection against ex vivo FIV is achievable but is relatively short-lived and can be difficult to boost.  相似文献   

20.
We previously reported that immunization with recombinant simian immunodeficiency virus SIVmne envelope (gp160) vaccines protected macaques against intravenous challenge by the cloned homologous virus E11S but that this protection was only partially effective against the uncloned virus, SIVmne. In the present study, we examine the protective efficacy of this immunization regimen against infection by a mucosal route. We found that the same gp160-based vaccines were highly effective against intrarectal infection not only with the E11S clone but also with the uncloned SIVmne. Protection against mucosal infection is therefore achievable by parenteral immunization with recombinant envelope vaccines. Protection appears to correlate with high levels of SIV-specific antibodies and, in animals protected against the uncloned virus, the presence of serum-neutralizing activities. To understand the basis for the differential efficacies against the uncloned virus by the intravenous versus the intrarectal routes, we examined viral sequences recovered from the peripheral blood mononuclear cells of animals early after infection by both routes. We previously showed that the majority (85%) of the uncloned SIVmne challenge stock contained V1 sequences homologous to the molecular clone from which the vaccines were made (E11S type), with the remainder (15%) containing multiple conserved changes (the variant types). In contrast to intravenously infected animals, from which either E11S-type or the variant type V1 sequences could be recovered in significant proportions, animals infected intrarectally had predominantly E11S-type sequences. Preferential transmission or amplification of the E11S-type viruses may therefore account in part for the enhanced efficacy of the recombinant gp160 vaccines against the uncloned virus challenge by the intrarectal route compared with the intravenous route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号