首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine is an important signaling molecule in the nervous system; it also plays a vital role in the development of diverse non-neuronal tissues in the fruit fly Drosophila melanogaster. The current study demonstrates that males depleted of dopamine as third instar larvae (via inhibition of the biosynthetic enzyme tyrosine hydroxylase) demonstrated abnormalities in courtship behavior as adults. These defects were suggestive of abnormalities in sensory perception and/or processing. Electroretinograms (ERGs) of eyes from adults depleted of dopamine for 1 day as third instar larvae revealed diminished or absent on- and off-transients. These sensory defects were rescued by the addition of L-DOPA in conjunction with tyrosine hydroxylase inhibition during the larval stage. Depletion of dopamine in the first or second larval instar was lethal, but this was not due to a general inhibition of proliferative cells. To establish that dopamine was synthesized in tissues destined to become part of the adult sensory apparatus, transgenic lines were generated containing 1 or 4 kb of 5' upstream sequences from the Drosophila tyrosine hydroxylase gene (DTH) fused to the E. coli beta-galactosidase reporter. The DTH promoters directed expression of the reporter gene in discrete and consistent patterns within the imaginal discs, in addition to the expected expression in gonadal, brain, and cuticular tissues. The beta-galactosidase expression colocalized with tyrosine hydroxylase protein. These results are consistent with a developmental requirement for dopamine in the normal physiology of adult sensory tissues.  相似文献   

2.
3.
Recent data suggested that endogenous hydrogen sulfide (H2S) contributes to the pathogenesis of diabetes. Here, we identified that cystathionine gamma lyase (CSE) was expressed in adipose tissue in rats and endogenously generated H2S. The CSE/H2S system exists in both rat adipocytes and pre-adipocytes. This system was up-regulated with aging, although a high level of glucose down-regulated the system in a concentration- and time-dependent manner. H2S inhibited the basal and insulin-stimulated glucose uptake of mature adipocytes, whereas administration of CSE inhibitors enhanced the glucose uptake of adipocytes. The PI3K but not KATP channel pathway is involved in the inhibitory effect of H2S on glucose uptake. Finally, in fructose-induced diabetes in rats, we confirmed the up-regulated CSE/H2S system in adipose tissue, which was negatively correlated with glucose uptake in this tissue. Our findings suggest that H2S might be a novel insulin resistance regulator.  相似文献   

4.
5.
Orexin (OX) neuropeptides stimulate feeding and arousal. Deficiency of orexin is implicated in narcolepsy, a disease associated with obesity, paradoxically in the face of reduced food intake. Here, we show that obesity in orexin-null mice is associated with impaired brown adipose tissue (BAT) thermogenesis. Failure of thermogenesis in OX-null mice is due to inability of brown preadipocytes to differentiate. The differentiation defect in OX-null neonates is circumvented by OX injections to OX-null dams. In?vitro, OX, triggers the full differentiation program in mesenchymal progenitor stem cells, embryonic fibroblasts and brown preadipocytes via p38 mitogen activated protein (MAP) kinase and bone morphogenetic protein receptor-1a (BMPR1A)-dependent Smad1/5 signaling. Our study suggests that obesity associated with OX depletion is linked to brown-fat hypoactivity, which leads to dampening of energy expenditure. Thus, orexin plays an integral role in adaptive thermogenesis and body weight regulation via effects on BAT differentiation and function.  相似文献   

6.
7.
8.
9.
The optic lobes, mushroom bodies (MB) and central complex (CC) of Drosophila melanogaster were investigated in order to find out whether rearing in different light regimes affect their size. Flies raised in constant light up for up to four days post eclosion had a lamina that was about 30% larger than in flies kept in constant darkness. A volume difference between light- and dark-reared flies could also be observed for the lobula plate, the MBs, and the CC. When the flies were kept in the dark for the first 12 hours of their adult life and then brought back to constant light for the next 3.5 days, the lamina was as small as the laminae of flies raised for four days in constant darkness. This finding suggests a critical period for lamina development during day one of the imago. Mutant studies suggest that the molecular mechanisms underlying this experience-dependent development might be quite diverse. For example, the structural plasticity of the mushroom bodies is abolished in the dunce mutation, whereas the light-dependent growth of the lamina is not. Finally, studies of optomotor behavior indicate an adaptational role for the structural plasticity in the optic lobe. Surprisingly, dark-reared flies see better under low light conditions than their light-reared counterparts. This suggests that a small lamina is not a bad lamina in the sense that dark-reared animals see worse. They rather adapt to the specific light-conditions they were growing up in.  相似文献   

10.
The Drosophila salivary gland is proving to be an excellent experimental system for understanding how cells commit to specific developmental programs and, once committed, how cells implement such decisions. Through genetic studies, the factors that determine where salivary glands will form, the number of cells committed to a salivary gland fate, and the distinction between the two major cell types (secretory cells and duct cells) have been discovered. Within the next few years, we will learn the molecular details of the interactions among the salivary gland regulators and salivary gland target genes. We will also learn how the early-expressed salivary gland genes coordinate their activities to mediate the morphogenetic movements required to form the salivary gland and the changes in cell physiology required for high secretory activity.  相似文献   

11.
The evolution of immune function depends not only on variation in genes contributing directly to the immune response, but also on genetic variation in other traits indirectly affecting immunocompetence. In particular, sexual selection is predicted to trade-off with immunocompetence because the extra investment of resources needed to increase sexual competitiveness reduces investment in immune function. Additional possible immunological consequences of intensifying sexual selection include an exaggeration of immunological sexual dimorphism, and the reduction of condition-dependent immunological costs due to selection of 'good genes' (the immunocompetence handicap hypothesis, ICHH). We tested for these evolutionary possibilities by increasing sexual selection in laboratory populations of Drosophila melanogaster for 58 generations by reestablishing a male-biased sex ratio at the start of each generation. Sexually selected flies were larger, took longer to develop, and the males were more sexually competitive than males from control (equal sex ratio) lines. We found support for the trade-off hypothesis: sexually selected males were found to have reduced immune function compared to control males. However, we found no evidence that sexual selection promoted immunological sexual dimorphism because females showed a similar reduction in immune function. We found no evidence of evolutionary changes in the condition-dependent expression of immunocompetence contrary to the expectations of the ICHH. Lastly, we compared males from the unselected base population that were either successful (IS) or unsuccessful (IU) in a competitive mating experiment. IS males showed reduced immune function relative to IU males, suggesting that patterns of phenotypic correlation largely mirror patterns of genetic correlation revealed by the selection experiment. Our results suggest increased disease susceptibility could be an important cost limiting increases in sexual competitiveness in populations experiencing intense sexual selection. Such costs may be particularly important given the high intersex correlation, because this represents an apparent genetic conflict, preventing males from reaching their sexually selected optimum.  相似文献   

12.
13.
14.
As a part of aging there are known to be numerous alterations which occur in multiple tissues of the body, and the focus of this study was to determine the extent to which oxidative stress and hypoxia occur during adipose tissue aging. In our studies we demonstrate for the first time that aging is associated with both hypoxia (38% reduction in oxygen levels, Po(2) 21.7 mmHg) and increases reactive oxygen species in visceral fat depots of aging male C57Bl/6 mice. Interestingly, aging visceral fat depots were observed to have significantly less change in the expression of genes involved in redox regulation compared with aging subcutaneous fat tissue. Exposure of 3T3-L1 adipocytes to the levels of hypoxia observed in aging adipose tissue was sufficient to alter multiple aspects of adipose biology inducing increased levels of in insulin-stimulated glucose uptake and decreased lipid content. Taken together, these data demonstrate that hypoxia and increased levels of reactive oxygen species occur in aging adipose tissue, highlighting the potential for these two stressors as potential modulators of adipose dysfunction during aging.  相似文献   

15.
Summary On the basis of 1200 Golgi-impregnated brains the structure of the central complex of Drosophila melanogaster was analyzed at the cellular level. The four substructures of the central complex — the ellipsoid body, the fanshaped body, the noduli, and the protocerebral bridge — are composed of (a) columnar small-field elements linking different substructures or regions in the same substructure and (b) tangential large-field neurons forming strata perpendicular to the columns. At least some small-field neurons belong to isomorphic sets, which follow various regular projection patterns. Assuming that the blebs of a neuron are presynaptic and the spines are postsynaptic, the Golgi preparations indicate that small-field neurons projecting to the ventral bodies (accessory area) are the main output from the central complex and that its main input is through the large-field neurons. These in turn are presumed to receive input in various neuropils of the brain including the ventral bodies. Transmitters can be attributed immunocytochemically to some neuron types. For example, GABA is confined to the R1–R4 neurons of the ellipsoid body, whereas these cells are devoid of choline acetyltransferase-like immunore-activity. It is proposed that the central complex is an elaboration of the interhemispheric commissure serving the fast exchange of data between the two brain hemispheres in the control of behavioral activity.  相似文献   

16.
Dearborn RE  Dai Y  Reed B  Karian T  Gray J  Kunes S 《PloS one》2012,7(5):e37303
Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression), was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system.  相似文献   

17.
18.
This study addresses the ability of DNA fragments from various sources to mediate autonomous DNA replication in cultured Drosophila melanogaster cells. We created a series of plasmids containing genomic DNA fragments from the Ultrabithorax gene of Drosophila and tested them for autonomous replication after transfection into Schneider line 2 cells. We found that all plasmids containing Drosophila DNA fragments were able to replicate autonomously, as were plasmids containing random human and Escherichia coli genomic DNA fragments. Most of the plasmids were detectable 18 days after transfection in the absence of selection, suggesting that transfected DNA is maintained in Drosophila cells without rapid loss or degradation. The finding that all plasmids containing Drosophila, human, or bacterial DNA replicate autonomously in Drosophila cells suggests that the signals that direct autonomous replication in Drosophila contain a low degree of sequence specificity. A two-dimensional gel analysis of initiation on one of the plasmids was consistent with many dispersed initiation sites. Low sequence specificity and dispersed initiation sites also characterize autonomous replication in human cells and Senopus eggs and may be general properties of autonomous replication in animal cells.  相似文献   

19.
Mitochondrial fusion and fission events, collectively known as mitochondrial dynamics, act as quality control mechanisms to ensure mitochondrial function and fine‐tune cellular bioenergetics. Defective mitofusin 2 (Mfn2) expression and enhanced mitochondrial fission in skeletal muscle are hallmarks of insulin‐resistant states. Interestingly, Mfn2 is highly expressed in brown adipose tissue (BAT), yet its role remains unexplored. Using adipose‐specific Mfn2 knockout (Mfn2‐adKO) mice, we demonstrate that Mfn2, but not Mfn1, deficiency in BAT leads to a profound BAT dysfunction, associated with impaired respiratory capacity and a blunted response to adrenergic stimuli. Importantly, Mfn2 directly interacts with perilipin 1, facilitating the interaction between the mitochondria and the lipid droplet in response to adrenergic stimulation. Surprisingly, Mfn2‐adKO mice were protected from high‐fat diet‐induced insulin resistance and hepatic steatosis. Altogether, these results demonstrate that Mfn2 is a mediator of mitochondria to lipid droplet interactions, influencing lipolytic processes and whole‐body energy homeostasis.  相似文献   

20.
In the Drosophila wing, the Nedd4 ubiquitin ligases (E3s), dNedd4 and Su(dx), are important negative regulators of Notch signaling; they ubiquitinate Notch, promoting its endocytosis and turnover. Here, we show that Drosophila Nedd4 family interacting protein (dNdfip) interacts with the Drosophila Nedd4-like E3s. dNdfip expression dramatically enhances dNedd4 and Su(dx)-mediated wing phenotypes and further disrupts Notch signaling. dNdfip colocalizes with Notch in wing imaginal discs and with the late endosomal marker Rab7 in cultured cells. In addition, dNdfip expression in the wing leads to ectopic Notch signaling. Supporting this, expression of dNdfip suppressed Notch(+/-) wing phenotype and knockdown of dNdfip enhanced the Notch(+/-) wing phenotype. The increase in Notch activity by dNdfip is ligand independent as dNdfip expression also suppressed deltex RNAi and Serrate(+/-) wing phenotypes. The opposing effects of dNdfip expression on Notch signaling and its late endosomal localization support a model whereby dNdfip promotes localization of Notch to the limiting membrane of late endosomes allowing for activation, similar to the model previously shown with ectopic Deltex expression. When dNedd4 or Su(dx) are also present, dNdfip promotes their activity in Notch ubiquitination and internalization to the lysosomal lumen for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号