首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we have shown that SOCS-1/3 overexpression in hepatic cells abrogates signaling of type I interferons (IFN) which may contribute to the frequently observed IFN resistance of hepatitis C virus (HCV). IFN-lambdas (IL-28A/B and IL-29), a novel group of IFNs, also efficiently inhibit HCV replication in vitro with potentially less hematopoietic side effects than IFN-alpha because of limited receptor expression in hematopoietic cells. To further evaluate the potential of IFN-lambdas in chronic viral hepatitis, we examined the influence of SOCS protein expression on IFN-lambda signaling. First, we show that hepatic cell lines express the IFN-lambda receptor complex consisting of IFN-lambdaR1 (IL-28R1) and IL-10R2. Whereas in mock-transfected HepG2 cells, IL-28A and IL-29 induced STAT1 and STAT3 phosphorylation, overexpression of SOCS-1 completely abrogated IL-28A and IL-29-induced STAT1/3 phosphorylation. Similarly, IL-28A and IL-29 induced mRNA expression of the antiviral proteins 2',5'-OAS and MxA was abolished by overexpression of SOCS-1. In conclusion, we assume that despite antiviral properties of IFN-lambdas, their efficacy as antiviral agents may have similar limitations as IFN-alpha due to inhibition by SOCS proteins.  相似文献   

2.
3.
Although elevation of the blood glucose level is a causal adverse effect of treatment with interferon (IFN), the precise underlying molecular mechanism is largely unknown. We examined the effects of type I and type II IFN (IFN-β and IFN-γ) on insulin-induced metabolic signaling leading to glucose uptake in 3T3-L1 adipocytes. IFN-β suppressed insulin-induced tyrosine phosphorylation of IRS-1 without affecting its expression, whereas IFN-γ reduced both the protein level and tyrosine phosphorylation. Although both IFNs stimulated phosphorylation of STAT1 (at Tyr(701)) and STAT3 (at Tyr(705)) after treatment for 30 min, subsequent properties of induction of the SOCS isoform were different. IFN-β preferentially induced SOCS1 rather than SOCS3, whereas IFN-γ strongly induced SOCS3 expression alone. In addition, adenovirus-mediated overexpression of either SOCS1 or SOCS3 inhibited insulin-induced tyrosine phosphorylation of IRS-1, whereas the reduction of IRS-1 protein was observed only in SOCS3-expressed cells. Notably, IFN-β-induced SOCS1 expression and suppression of insulin-induced tyrosine phosphorylation of IRS-1 were attenuated by siRNA-mediated knockdown of STAT1. In contrast, adenovirus-mediated expression of a dominant-negative STAT3 (F-STAT3) attenuated IFN-γ-induced SOCS3 expression, reduction of IRS-1 protein, and suppression of insulin-induced glucose uptake but did not have any effect on the IFN-β-mediated SOCS1 expression and inhibition of insulin-induced glucose uptake. Interestingly, pretreatment of IFN-γ with IL-6 synergistically suppressed insulin signaling, even when IL-6 alone had no significant effect. These results indicate that type I and type II IFN induce insulin resistance by inducing distinct SOCS isoforms, and IL-6 synergistically augments IFN-γ-induced insulin resistance by potentiating STAT3-mediated SOCS3 induction in 3T3-L1 adipocytes.  相似文献   

4.
5.
研究HCV核心蛋白对干扰素α诱导的抗病毒分子PKR和2′-5′OAS表达的影响及其机制。HCV核心蛋白表达质粒转染HepG2细胞,RT-PCR分析PKR和2′-5′OAS的mRNA水平变化,荧光素酶活性分析核心蛋白对ISRE介导的基因表达的影响;Western-blot分析SOCS3、STAT1及STAT1磷酸化水平的变化。在干扰素α刺激情况下,表达HCV核心蛋白的细胞中,PKR和2′-5′OAS的mRNA水平下降,ISRE介导的荧光素酶活性降低,STAT1磷酸化水平下降。此外,核心蛋白表达的细胞中SOCS3的mRNA和蛋白水平明显升高。结果表明,HCV核心蛋白可能通过激活SOCS3、抑制STAT1的磷酸化,从而下调干扰素α诱导的PKR和2′-5′OAS表达。  相似文献   

6.
7.
T cells play an important role in the control of hepatitis C virus (HCV) infection. We have previously demonstrated that the HCV core inhibits T-cell responses through interaction with gC1qR. We show here that core proteins from chronic and resolved HCV patients differ in sequence, gC1qR-binding ability, and T-cell inhibition. Specifically, chronic core isolates bind to gC1qR more efficiently and inhibit T-cell proliferation as well as gamma interferon (IFN-gamma) production more profoundly than resolved core isolates. This inhibition is mediated by the disruption of STAT phosphorylation through the induction of SOCS molecules. Silencing either SOCS1 or SOCS3 by small interfering RNA dramatically augments the production of IFN-gamma in T cells, thereby abrogating the inhibitory effect of core. Additionally, the ability of core proteins from patients with chronic infections to induce SOCS proteins and suppress STAT activation greatly exceeds that of core proteins from patients with resolved infections. These results suggest that the HCV core/gC1qR-induced T-cell dysfunction involves the induction of SOCS, a powerful inhibitor of cytokine signaling, which represents a novel mechanism by which a virus usurps the host machinery for persistence.  相似文献   

8.
The importance of salt bridge interactions at the NADPH binding site of dihydrofolate reductase has been studied by using site-directed mutagenesis. The mutations R44L and H45Q respectively disrupt the ionic contacts made between the 2'-phosphate and pyrophosphoryl moiety of the coenzyme and the N-terminal region of helix C. Equilibrium fluorescence experiments indicate that while the overall binding of NADPH to both free mutants is weakened by 1.1 and 1.5 kcal/mol (H45Q and R44L, respectively), the binding of dihydrofolate and tetrahydrofolate is unaffected. Despite the similar binding energies for both mutants, the transition state for the chemical hydride step is differentially destabilized relative to wild type (0.6 and 1.8 kcal/mol for H45Q and R44L, respectively). Both stopped-flow and pre-steady-state experiments suggest that the root of this effect may lie in multiple conformations for the E-NADPH complex of R44L. The ability of both mutants to transmit their effects beyond the local environment of the NADPH pocket is manifested in several details: (1) the pKa of Asp-27 (25 A away from the sites of mutation) is elevated from 6.5 in the wild type to 7.5 and 8.4 in H45Q and R44L, respectively; (2) NADPH elevates the off rates for tetrahydrofolate from 12 s-1 in the wild type to greater than 45 s-1 in R44L; and (3) bound tetrahydrofolate decreases the affinity of the enzymes for NADPH as reflected in the Km from 2 to 40 microM for H45Q (similar to wild type) but from 8 to 5000 microM for R44L.  相似文献   

9.

Background

Amino acid (aa) 70 substitution (R70Q/H) in the core protein of hepatitis C virus (HCV) genotype 1b has been shown to be one of the key factors in determining resistance for pegylated interferon-α plus ribavirin combination therapy (PEG-IFNα/RBV). But the exact mechanisms remain unclear. The aim of this study was to investigate the dynamic response of wild and mutant core codon 70 strains to PEG-IFNα/RBV treatment.

Methods

One hundred twelve Chinese patients with chronic HCV 1b infection were enrolled and received a standard protocol of 48 weeks of PEG-IFNα/RBV therapy and 24 consecutive weeks of follow-up. Serial blood samples were obtained at pretreatment baseline, and again at weeks 2, 4, 8, 12, and 24 during therapy for the quantification of 70R and 70Q/H strains. Dynamic characteristics and association with early virological response (EVR), sustained virological response (SVR) and IL28B genotypes were analyzed.

Results

Of the 112 patients enrolled in this study, 93.8 % (105/112) were infected with mixture of 70R and 70Q/H strains before treatment. The 70Q/H strain was dominant in 20.5 % of patients. 42.9 % of patients with dominant 70Q/H exhibited EVR versus 88.6 % of patients with dominant 70R (P?<?0.001). Furthermore, 35.0 % of patients with dominant 70Q/H exhibited SVR versus 77.4 % with dominant 70R (P?<?0.001). However, regardless of the dominant strain, virological response types or the IL28B SNP genotypes, 70Q/H strains always exhibited the same response to treatment as the 70R strains and the percentage of HCV harboring the 70Q/H substitution did not change significantly during treatment.

Conclusions

Although the ratio of 70Q/H to 70R is related to the virological response, 70Q/H strains always exhibited the same response as the 70R strains during PEG-IFNα/RBV treatment. Substitution of R70Q/H alone is not enough to lead to resistance to therapy. Positive selection for 70Q/H induced by IFNα was not observed.
  相似文献   

10.
Some properties of G84R and L99M mutants of HspB1 associated with peripheral distal neuropathies were investigated. Homooligomers formed by these mutants are larger than those of the wild type HspB1. Large oligomers of G84R and L99M mutants have compromised stability and tend to dissociate at low protein concentration. G84R and L99M mutations promote phosphorylation-dependent dissociation of HspB1 oligomers without affecting kinetics of HspB1 phosphorylation by MAPKAP2 kinase. Both mutants weakly interact with HspB6 forming small heterooligomers and being unable to form large heterooligomers characteristic for the wild type HspB1. G84R and L99M mutants possess lower chaperone-like activity than the wild type HspB1 with several model substrates. We suggest that G84R mutation affects mobility and accessibility of the N-terminal domain thus modifying interdimer contacts in HspB1 oligomers. The L99M mutation is located within the hydrophobic core of the α-crystallin domain close to the key R140 residue, and could affect the dimer stability.  相似文献   

11.
12.

Background & Aims

It has been suggested that amino acid (aa) substitution at position 70 from arginine (70R) to glutamine (70Q) in the genotype 1b hepatitis C virus (HCV) core protein is associated with insulin resistance and worse prognosis. However, the precise mechanism is still unclear. The aim of this study was to investigate the impact of the substitution at position 70 in HCV core protein on adipokine production by murine and human adipocytes.

Methods

The influence of treatment with HCV core protein (70R or 70Q) on adipokine production by both 3T3-L1 and human adipocytes were examined with real-time PCR and enzyme-linked immunosorbent assay (ELISA), and triglyceride content was also analyzed. The effects of toll-like receptor (TLR)2/4 inhibition on IL-6 production by 3T3-L1 induced by HCV core protein were examined.

Results

IL-6 production was significantly increased and adiponectin production was reduced without a change in triglyceride content by treatment with 70Q compared to 70R core protein in both murine and human adipocytes. IL-6 induction of 3T3-L1 cells treated by 70Q HCV core protein was significantly inhibited with anti-TLR2 antibody by 42%, and by TLR4 inhibitor by 40%.

Conclusions

Our study suggests that extracellular HCV core protein with substitution at position 70 enhanced IL-6 production and reduced adiponectin production from visceral adipose tissue, which can cause insulin resistance, hepatic steatosis, and ultimately development of HCC.  相似文献   

13.
Hepatitis C virus (HCV) infection is a leading cause a of chronic liver disease worldwide. The main therapeutic regimen is the combination of interferon alpha (IFN) and the nucleoside analog, Ribavirin. IFN initiates an intracellular antiviral state by the JAK-STAT signaling pathway, including a presumed role for STAT1 and STAT2. We have previously shown that the STAT3 activation occurs during IFN treatment of human hepatoma cells, suggesting that the STAT3-mediated pathway is relevant to IFN-induced antiviral activity. In this study, we investigate the role of activated STAT3 in the induction of anti-HCV activity in human hepatoma cells. We demonstrate that the STAT3 activation is involved in efficient IFN-induced anti-HCV activity. Using an inducible, cytokine-independent, STAT3 activation system, in which the entire coding region of STAT3 is fused with the ligand-binding domain of the estrogen receptor, we demonstrate that: activated STAT3 is tightly regulated in a stably transfected cell line by an estrogen analog, 4-HT; activated STAT3 initiates efficient anti-HCV activity in a HCV subgenomic replicon cell line; and activation of STAT3 is associated with the induction of a potential antiviral gene, 1-8U. In addition, we show that the cytokine IL-6, a potent STAT3 activator, inhibits HCV subgenomic RNA replication through STAT3 activation and ERK pathway. These results strongly suggest that STAT3 activation is capable of initiating intracellular antiviral pathways.  相似文献   

14.
15.
16.
17.
Y Imamoto  K Mihara  F Tokunaga  M Kataoka 《Biochemistry》2001,40(48):14336-14343
The absorption spectra of photocycle intermediates of photoactive yellow protein mutants were compared with those of the corresponding intermediates of wild type to probe which amino acid residues interact with the chromophore in the intermediate states. B and H intermediates were produced by irradiation and trapped at 80 K, and L intermediates at 193 K. The absorption spectra of these intermediates produced from R52Q were identical to those from wild type, whereas those from E46Q and T50V were 7-15 nm red-shifted as those in the dark states. The absorption spectra of M intermediates were measured by flash photolysis at room temperature. Those of Y42F, T50V, and R52Q were identical to that of wild type, whereas that of E46Q was 11 nm red-shifted. Assuming that the intermediates of mutants have a structure comparable to that of wild type, these findings suggest the following: Glu46 interacts with the chromophore throughout the photocycle, interaction between the chromophore and Thr50 as well as Tyr42 is lost upon the formation of M intermediate, and Arg52 never interacts with the chromophore directly. The hydrogen-bonding network around the phenolic oxygen of the chromophore would be thus maintained until L intermediate decays, and the global conformational change would take place by the loss of the hydrogen bond between the chromophore and Tyr42. This model conflicts with some of the results of previous crystallographic studies, suggesting that the reaction mechanism in the crystal may be different from that in solution.  相似文献   

18.
19.
To understand the molecular function of troponin T (TnT) in the Ca(2+) regulation of muscle contraction as well as the molecular pathogenesis of familial hypertrophic cardiomyopathy (FHC), eight FHC-linked TnT mutations, which are located in different functional regions of human cardiac TnT (HCTnT), were produced, and their structural and functional properties were examined. Circular dichroism spectroscopy demonstrated different secondary structures of these TnT mutants. Each of the recombinant HCTnTs was incorporated into porcine skinned fibers along with human cardiac troponin I (HCTnI) and troponin C (HCTnC), and the Ca(2+) dependent isometric force development of these troponin-replaced fibers was determined at pH 7.0 and 6.5. All eight mutants altered the contractile properties of skinned cardiac fibers. E244D potentiated the maximum force development without changing Ca(2+) sensitivity. In contrast, the other seven mutants increased the Ca(2+) sensitivity of force development but not the maximal force. R92L, R92W, and R94L also decreased the change in Ca(2+) sensitivity of force development observed on lowering the pH from 7 to 6.5, when compared with wild type TnT. The examination of additional mutants, H91Q and a double mutant H91Q/R92W, suggests that mutations in a region including residues 91-94 in HCTnT can perturb the proper response of cardiac contraction to changes in pH. These results suggest that different regions of TnT may contribute to the pathogenesis of TnT-linked FHC through different mechanisms.  相似文献   

20.
Mutational analysis of the disulfide catalysts DsbA and DsbB   总被引:2,自引:0,他引:2  
In prokaryotes, disulfides are generated by the DsbA-DsbB system. DsbB functions to generate disulfides by quinone reduction. These disulfides are passed to the DsbA protein and then to folding proteins. To investigate the DsbA-DsbB catalytic system, we performed an in vivo selection for chromosomal dsbA and dsbB mutants. We rediscovered many residues previously shown to be important for the activity of these proteins. In addition, we obtained one novel DsbA mutant (M153R) and four novel DsbB mutants (L43P, H91Y, R133C, and L146R). We also mutated residues that are highly conserved within the DsbB family in an effort to identify residues important for DsbB function. We found classes of mutants that specifically affect the apparent K(m) of DsbB for either DsbA or quinones, suggesting that quinone and DsbA may interact with different regions of the DsbB protein. Our results are consistent with the interpretation that the residues Q33 and Y46 of DsbB interact with DsbA, Q95 and R48 interact with quinones, and that residue M153 of DsbA interacts with DsbB. All of these interactions could be due to direct amino acid interactions or could be indirect through, for instance, their effect on protein structure. In addition, we find that the DsbB H91Y mutant severely affects the k(cat) of the reaction between DsbA and DsbB and that the DsbB L43P mutant is inactive, suggesting that both L43 and H91 are important for the activity of DsbB. These experiments help to better define the residues important for the function of these two protein-folding catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号