首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How are public perceptions towards synthetic biology likely to evolve? Which factors will impact the framing of this emerging technology, its benefits and risks? The objective of this article is not to draw exhaustive conclusions about public perceptions of synthetic biology, but rather to provide readers with a review of integrated findings from the first quantitative and qualitative research ever conducted on this subject in the United States. Synthetic biology survey research shows two clear findings. The first is that most people know little or nothing about synthetic biology. Second, notwithstanding this lack of knowledge, respondents are likely to venture some remark about what they think synthetic biology is and the tradeoff between potential benefits and potential risks. Finding only some support for the “familiarity argument”—according to which support for emerging technologies will likely increase as awareness of them develops—this article suggests that analogs to cloning, genetic engineering and stem cell research appear to be recurrent in the framing process of synthetic biology. The domain of application seems to be another decisive factor in the framing of synthetic biology. Finally, acceptance of the risk-benefit tradeoff of synthetic biology seems to depend on having an oversight structure that would prove able to manage unknowns, human and environmental concerns, and long-term effects. The most important conclusion of this study is the need for additional investigation of factors that will shape public perceptions about synthetic biology, its potential benefits, and its potential risks.  相似文献   

2.
The dual-use dilemma in the life sciences-that illicit applications draw on the same science and technology base as legitimate applications-makes it inherently difficult to control one without inhibiting the other. Since before the September 11 attacks, the science and security communities in the United States have struggled to develop governance processes that can simultaneously minimize the risk of misuse of the life sciences, promote their beneficial applications, and protect the public trust. What has become clear over that time is that while procedural steps can be specified for assessing and managing dual-use risks in the review of research proposals, oversight of ongoing research, and communication of research results, the actions or decisions to be taken at each of these steps to mitigate dual-use risk defy codification. Yet the stakes are too high to do nothing, or to be seen as doing nothing. The U.S. government should therefore adopt an oversight framework largely along the lines recommended by the National Science Advisory Board for Biosecurity almost 5 years ago-one that builds on existing processes, can gain buy-in from the scientific community, and can be implemented at modest cost (both direct and opportunity), while providing assurance that a considered and independent examination of dual-use risks is being applied. Without extraordinary visibility into the actions of those who would misuse biology, it may be impossible to know how well such an oversight system will actually succeed at mitigating misuse. But maintaining the public trust will require a system to be established in which reasonably foreseeable dual-use consequences of life science research are anticipated, evaluated, and addressed.  相似文献   

3.
New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications.  相似文献   

4.
Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more “biology inspired.”  相似文献   

5.
Synthetic biology is currently one of the most debated emerging biotechnologies. The societal assessment of this technology is primarily based on contributions by scientists and policy makers, who focus mainly on technical challenges and possible risks. While public dialogue is given, it is yet rather limited. This study explores public debates concerning synthetic biology based on a focus group study with citizens from Austria and Germany and contextualises the analysed public views with content from policy reports and previous empirical studies on public engagement. The findings suggest that discussants favoured a gradual implementation process of synthetic biology, which is receptive to questions about the distribution of possible benefits. The discussed topics correspond in many ways with content from policy reports and former investigations, yet the emphasis of the discussions was different for many aspects.  相似文献   

6.
The one-day meeting on Synthetic DNA (January 24, 2012) organized by and held at the DECHEMA in Frankfurt attracted about 100 participants from academia and industry interested in synthesizing DNA and its applications in synthetic biology. In recent years the cost for synthetic DNA reduced from 7€/bp to 0.35€/bp which has opened up many new possibilities for molecular biology. You can purchase the gene, cDNA, oligo library or full vector specifically for a particular expression host and apply synthetic biology principles to produce or create new drugs, vaccines or any other biotechnological products. There are, however, great concerns within society to produce organisms that do not exist in nature, and the potential misuse of them. Adressing these concerns and to use a clear terminology that do not cause misunderstandings are important issues within the field, which were also discussed at this meeting.  相似文献   

7.
The International Embryo Transfer Society (IETS) was founded in 1974. Early members used the society as a forum for the exchange of scientific and technical information relevant to a newly emerging embryo transfer industry. The impact that embryo transfer could have on the international trade of livestock genetics was clear by 1982, so the IETS commissioned the Import/Export Committee. The initial challenge for this Committee was to deal with concerns about disease transmission via embryo transfer. Many of the early concerns have been dispelled, but at the time they threatened the continued development of a fledgling industry. Over the past two decades, many new critical challenges have been met and managed by this Committee, which was recently renamed the Health and Safety Advisory Committee (HASAC). Assessing risks of animal disease transmission via reproductive technologies and establishing protocols for managing these risks are still major issues for HASAC. However, additional concerns have developed as views of the society changed and as novel applications of biotechnology in farm animals were identified. This paper is intended to chronicle some of the major changes and challenges that were managed by members of the HASAC and its Subcommittees from the early years of embryo transfer to the current millennium with technological advances in molecular biology.  相似文献   

8.
This article is concerned with the representation of Synthetic Biology in the media and by biotechnology experts. An analysis was made of German-language media articles published between 2004 and 2008, and interviews with biotechnology-experts at the Synthetic Biology conference SB 3.0 in Zurich 2007. The results have been reflected in terms of the definition of Synthetic Biology, applications of Synthetic Biology and the perspectives of opportunities and risks. In the media, Synthetic Biology is represented as a new scientific field of biology with an engineering-like thinking, while the scientists interviewed mostly define Synthetic Biology as contrary to nature and the natural system. Media articles present Synthetic Biology broadly with positive potential and inform the publics less about the potential risks than about the benefits of Synthetic Biology. In contrast, the experts interviewed reflect more on the risks than the opportunities of Synthetic Biology. Both used metaphors to describe Synthetic Biology and its aspects.  相似文献   

9.
Synthetic biology is considered as an emerging research field that will bring new opportunities to biotechnology. There is an expectation that synthetic biology will not only enhance knowledge in basic science, but will also have great potential for practical applications. Synthetic biology is still in an early developmental stage in China. We provide here a review of current Chinese research activities in synthetic biology and its different subfields, such as research on genetic circuits, minimal genomes, chemical synthetic biology, protocells and DNA synthesis, using literature reviews and personal communications with Chinese researchers. To meet the increasing demand for a sustainable development, research on genetic circuits to harness biomass is the most pursed research within Chinese researchers. The environmental concerns are driven force of research on the genetic circuits for bioremediation. The research on minimal genomes is carried on identifying the smallest number of genomes needed for engineering minimal cell factories and research on chemical synthetic biology is focused on artificial proteins and expanded genetic code. The research on protocells is more in combination with the research on molecular-scale motors. The research on DNA synthesis and its commercialisation are also reviewed. As for the perspective on potential future Chinese R&D activities, it will be discussed based on the research capacity and governmental policy.  相似文献   

10.
Synthetic biology (SynBio) has tremendous, transformative potential. Like other technologies, it can be used for good or ill. Currently, the structure of the allocation of potential benefits and risks is biased in favor of richer countries. The underlying problem is simple: most risks from SynBio are universal and affect both the rich and the poor with equal force; but benefits from SynBio can be expected to accrue chiefly to the rich. The risk/benefit balance is therefore skewed in a way that may lead to inefficient and unfair decisions. One potential solution is presented in this paper, using the principles that underlie the Health Impact Fund (HIF). The HIF is designed to reward companies based on assessed health impact, no matter where it occurs in the world, so that extending the life of a poor person is as profitable as extending the life of a rich person. This paper considers both the potential benefits and costs of SynBio; examines how the current global pharmaceutical industry is structured; introduces the HIF proposal; and finally explores how the principles underlying the HIF could be used productively with SynBio for global health.  相似文献   

11.
Synthetic biology raises few, if any, social concerns that are distinctively new. Similar to many other convergent technologies, synthetic biology’s interface across various scientific communities and interests groups presents an incessant challenge to political and conceptual boundaries. However, the scale and intensity of these interfaces seem to necessitate a reflection over how corresponding governance capacities can be developed. This paper argues that, in addition to existing regulatory approaches, such capacities may be gained through the art of trans-boundary governance, which is not only attentive to the crossing and erosion of particular boundaries but also adept in keeping up with the dynamics among evolving networks of actors.  相似文献   

12.
Dangerous prey and daring predators: a review   总被引:1,自引:0,他引:1  
How foragers balance risks during foraging is a central focus of optimal foraging studies. While diverse theoretical and empirical work has revealed how foragers should and do manage food and safety from predators, little attention has been given to the risks posed by dangerous prey. This is a potentially important oversight because risk of injury can give rise to foraging costs similar to those arising from the risk of predation, and with similar consequences. Here, we synthesize the literature on how foragers manage risks associated with dangerous prey and adapt previous theory to make the first steps towards a framework for future studies. Though rarely documented, it appears that in some systems predators are frequently injured while hunting and risk of injury can be an important foraging cost. Fitness costs of foraging injuries, which can be fatal, likely vary widely but have rarely been studied and should be the subject of future research. Like other types of risk‐taking behaviour, it appears that there is individual variation in the willingness to take risks, which can be driven by social factors, experience and foraging abilities, or differences in body condition. Because of ongoing modifications to natural communities, including changes in prey availability and relative abundance as well as the introduction of potentially dangerous prey to numerous ecosystems, understanding the prevalence and consequences of hunting dangerous prey should be a priority for behavioural ecologists.  相似文献   

13.
The principal existing real-world application of synthetic biology is biofuels. Several ‘next generation biofuel’ companies—Synthetic Genomics, Amyris and Joule Unlimited Technologies—claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon’s notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic.  相似文献   

14.
Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build—and subject to exhaustive experimental tests—models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set.  相似文献   

15.
Although therapeutics derived from biological sources have been subjected to regulatory oversight for some time, the products used in transplantation procedures have historically been exempt from this oversight. These products have been viewed as being part of medical practice rather than as the result of mainstream pharmaceutical manufacture. Furthermore, their unique source makes them difficult to assess in traditional regulatory systems based on the␣tenets of pharmaceutical quality control. With the␣increasing use of transplantation therapies to both replace dysfunctional organs and to influence genetic and metabolic processes, public health concerns on these therapies have increased. In addition, it is recognized that therapeutic claims for some of these interventions need to be properly assessed. These considerations have led the established regulatory agencies of the developed world to develop new regulatory paradigms for the products of transplantation practice. While a number of concerns have driven these developments, the minimization of infectious disease risk remains the paramount driver for introducing these regulatory systems. More than the regulation of medicines and medical devices manufactured in traditional pharmaceutical modes, the regulation of cell and tissue products is intimately linked to areas of public health policy and funding. This places regulators in a challenging position as they attempt to reconcile their roles as independent assessors with the needs of the overall public health framework. This is particularly difficult when considering measures which may affect access to life saving therapies. Regulators have recognized the need to assess these therapies through systems which incorporate consideration of risk-benefit ratios and include mechanisms for transparent and accountable release of products when full compliance to traditional concepts of manufacturing practice is not possible.  相似文献   

16.
Synthetic biology concerns applying engineering principles to biological systems. Engineering properties such as fine tuning, novel specificity, and modularity could be components of a synthetic toolkit that can be exploited to explore various issues in cancer research such as elucidation of mechanisms and pathways, creating new diagnostic tools and novel therapeutic approaches. A repertoire of synthetic biology toolkits involving DNA, RNA and protein bio-parts, have been applied to address the issues of drug target identification, drug discovery and therapeutic treatment in cancer research, thereby projecting a new dimension in oncology research.  相似文献   

17.
Synthetic Biology is a field involving synthesis of novel biological systems which are not generally found in nature. It has brought a new paradigm in science as it has enabled scientists to create life from the scratch, hence helping better understand the principles of biology. The viability of living organisms that use unnatural molecules is also being explored. Unconventional projects such as DNA playing tic-tac-toe, bacterial photographic film, etc. are taking biology to its extremes. The field holds a promise for mass production of cheap drugs and programming bacteria to seek-and-destroy tumors in the body. However, the complexity of biological systems make the field a challenging one. In addition to this, there are other major technical and ethical challenges which need to be addressed before the field realizes its true potential.  相似文献   

18.
Research on the construction of minimal cell-like systems is continuously progressing. The aim is to assemble a synthetic or semi-synthetic cell by encapsulating the minimal set of different macromolecules into a lipid vesicle (liposome). Synthetic cells have their relevance as new biotechnological tool for use in synthetic biology and in research into the origin of life. In recent years, several technical advances have been reported and reviewed, but most deal with the biochemical and molecular biology of protein synthesis inside liposomes, whereas a discussion on the importance and the interplay of some physical factors has not been discussed. In this short review, we comment on physical aspects, such as compartment formation and solute entrapment, and on the nature of lipid membrane. Emphasis is given to their relevance for the technology of construction of synthetic cells, and for new aspects of vesicle population studies.  相似文献   

19.
Kitney R  Freemont P 《FEBS letters》2012,586(15):2029-2036
Just over two years ago there was an article in Nature entitled "Five Hard Truths for Synthetic Biology". Since then, the field has moved on considerably. A number of economic commentators have shown that synthetic biology very significant industrial potential. This paper addresses key issues in relation to the state of play regarding synthetic biology. It first considers the current background to synthetic biology, whether it is a legitimate field and how it relates to foundational biological sciences. The fact that synthetic biology is a translational field is discussed and placed in the context of the industrial translation process. An important aspect of synthetic biology is platform technology, this topic is also discussed in some detail. Finally, examples of application areas are described.  相似文献   

20.
Despite the ubiquitous nature of Spearman's g in mental test performance, the charge «intelligence is what intelligence tests test» has not been countered in a satisfactory way. It is proposed that there are two ways to answer this complaint. The first concerns the new hypothesis testing models in factor analysis. The second involves studying the ‘biology of intelligence’. The biology of intelligence has various meanings and four are discussed: biology as theory; biology as race and genetics; biology as neurobiology; and biology as basic psychological processes. The last of these is considered in some detail and it is found that reaction time, evoked potentials and inspection time offer bright prospects for further research on the biology of psychometric intelligence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号