首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A surveillance mechanism, the S phase checkpoint, blocks progression into mitosis in response to DNA damage and replication stress. Segregation of damaged or incompletely replicated chromosomes results in genomic instability. In humans, the S phase checkpoint has been shown to constitute an anti-cancer barrier. Inhibition of mitotic cyclin dependent kinase (M-CDK) activity by Wee1 kinases is critical to block mitosis in some organisms. However, such mechanism is dispensable in the response to genotoxic stress in the model eukaryotic organism Saccharomyces cerevisiae. We show here that the Wee1 ortholog Swe1 does indeed inhibit M-CDK activity and chromosome segregation in response to genotoxic insults. Swe1 dispensability in budding yeast is the result of a redundant control of M-CDK activity by the checkpoint kinase Rad53. In addition, our results indicate that Swe1 is an effector of the checkpoint central kinase Mec1. When checkpoint control on M-CDK and on Pds1/securin stabilization are abrogated, cells undergo aberrant chromosome segregation.  相似文献   

2.
Daw  E Warwick  Morrison  John  Zhou  Xiaojun  Thomas  Duncan C 《BMC genetics》2003,4(1):1-11

Background

The Rad26/Rad3 complex in fission yeast detects genotoxic insults and initiates the cell cycle arrest and recovery activities of the DNA damage checkpoint. To investigate how the Rad26/Rad3 complex performs these functions, we constructed and characterized Rad26-GFP.

Results

Rad26-GFP localized to approximately six nuclear dots in cycling cells. Following treatment with a DNA damaging agent, Rad26-GFP localization changed. Damaged cells contained one or two bright Rad26-GFP spots, in addition to smaller, more numerous Rad26-GFP speckles. Genetic analyses demonstrated that these Rad26-GFP patterns (dots, spots and speckles) were unaffected by null mutations in other DNA damage checkpoint genes, including rad3 +. Data obtained with our Rad26.T12-GFP fusion protein correlate spots with cell cycle arrest activities and speckles with DNA repair activities. In addition, physiological experiments demonstrated that rad26Δ and rad3Δ alleles confer sensitivity to a microtubule-depolymerizing drug.

Conclusion

We have discovered three distinct Rad26-GFP cellular structures. Formation of these structures did not require other checkpoint proteins. These data demonstrate that Rad26 can respond to genotoxic insult in the absence of Rad3 and the other checkpoint Rad proteins.  相似文献   

3.
In Saccharomyces cerevisiae, a DNA damage checkpoint in the S-phase is responsible for delaying DNA replication in response to genotoxic stress. This pathway is partially regulated by the checkpoint proteins Rad9, Rad17 and Rad24. Here, we describe a novel hypermutable phenotype for rad9Δ, rad17Δ and rad24Δ cells in response to a chronic 0.01% dose of the DNA alkylating agent MMS. We report that this hypermutability results from DNA damage introduction during the S-phase and is dependent on a functional translesion synthesis pathway. In addition, we performed a genetic screen for interactions with rad9Δ that confer sensitivity to 0.01% MMS. We report and quantify 25 genetic interactions with rad9Δ, many of which involve the post-replication repair machinery. From these data, we conclude that defects in S-phase checkpoint regulation lead to increased reliance on mutagenic translesion synthesis, and we describe a novel role for members of the S-phase DNA damage checkpoint in suppressing mutagenic post-replicative repair in response to sublethal MMS treatment.  相似文献   

4.
Saccharomyces cerevisiae cells exposed to a variety of physiological stresses transiently delay bud emergence or bud growth. To maintain coordination between bud formation and the cell cycle in such circumstances, the morphogenesis checkpoint delays nuclear division via the mitosis-inhibitory Wee1-family kinase, Swe1p. Swe1p is degraded during G2 in unstressed cells but is stabilized and accumulates following stress. Degradation of Swe1p is preceded by its recruitment to the septin scaffold at the mother-bud neck, mediated by the Swe1p-binding protein Hsl7p. Following osmotic shock or actin depolymerization, Swe1p is stabilized, and previous studies suggested that this was because Hsl7p was no longer recruited to the septin scaffold following stress. However, we now show that Hsl7p is in fact recruited to the septin scaffold in stressed cells. Using a cyclin-dependent kinase (CDK) mutant that is immune to checkpoint-mediated inhibition, we show that Swe1p stabilization following stress is an indirect effect of CDK inhibition. These findings demonstrate the physiological importance of a positive-feedback loop in which Swe1p activity inhibits the CDK, which then ceases to target Swe1p for degradation. They also highlight the difficulty in disentangling direct checkpoint pathways from the effects of positive-feedback loops active at the G2/M transition.  相似文献   

5.
The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans.  相似文献   

6.
A morphogenesis checkpoint in budding yeast delays cell cycle progression in response to perturbations of cell polarity that prevent bud formation (Lew, D.J., and S.I. Reed. 1995. J. Cell Biol. 129:739– 749). The cell cycle delay depends upon the tyrosine kinase Swe1p, which phosphorylates and inhibits the cyclin-dependent kinase Cdc28p (Sia, R.A.L., H.A. Herald, and D.J. Lew. 1996. Mol. Biol. Cell. 7:1657– 1666). In this report, we have investigated the nature of the defect(s) that trigger this checkpoint. A Swe1p- dependent cell cycle delay was triggered by direct perturbations of the actin cytoskeleton, even when polarity establishment functions remained intact. Furthermore, actin perturbation could trigger the checkpoint even in cells that had already formed a bud, suggesting that the checkpoint directly monitors actin organization, rather than (or in addition to) polarity establishment or bud formation. In addition, we show that the checkpoint could detect actin perturbations through most of the cell cycle. However, the ability to respond to such perturbations by delaying cell cycle progression was restricted to a narrow window of the cell cycle, delimited by the periodic accumulation of the checkpoint effector, Swe1p.  相似文献   

7.
In budding yeast four mitotic cyclins (Clb1–4) cooperate in a partially redundant manner to bring about M-phase specific events, including the apical isotropic switch that ends polarized bud growth initiated at bud emergence. How exactly this morphogenetic transition is regulated by mitotic CDKs remains poorly understood. We have taken advantage of the isotropic bud growth that prevails in cells responding to DNA damage to unravel the contribution of mitotic cyclins in this cellular context. We find that clb2∆, in contrast to the other mitotic cyclin mutants, inappropriately respond to the presence of DNA damage. This aberrant response is characterized by a Cdc42- and Bni1-dependent but Cln-independent resumption of polarized bud growth after a brief period of actin depolarization. Biochemical and genetic evidence is presented that formally excludes the possibility of indirect effects due for instance to unrestrained APC activity, untimely mitotic exit or Swe1-mediated CDK inhibition. Importantly, our data demonstrate that in order to maintain the characteristic dumbbell arrest phenotype upon checkpoint activation Clb2 needs to be efficiently exported into the cytoplasm. We propose that the inhibition of mitotic cyclin destruction by the DNA damage checkpoint pathway leads to a buildup of Clb2 in the cytoplasm where this cyclin can stabilize the apical isotropic switch throughout a G2/M checkpoint arrest. Our study also unveils an essential role of nuclear Clb2 in both survival and adaptation to the DNA damage checkpoint, illustrating a spatially distinct dual function of this mitotic cyclin in the response to DNA damage.  相似文献   

8.
Inheritance of the endoplasmic reticulum (ER) requires Ptc1p, a type 2C protein phosphatase of Saccharomyces cerevisiae. Genetic analysis indicates that Ptc1p is needed to inactivate the cell wall integrity (CWI) MAP kinase, Slt2p. Here we show that under normal growth conditions, Ptc1p inactivates Slt2p just as ER tubules begin to spread from the bud tip along the cortex. In ptc1Δ cells, the propagation of cortical ER from the bud tip to the periphery of the bud is delayed by hyperactivation of Slt2p. The pool of Slt2p that controls ER inheritance requires the CWI pathway scaffold, Spa2p, for its retention at the bud tip, and a mutation within Slt2p that prevents its association with the bud tip blocks its role in ER inheritance. These results imply that Slt2p inhibits a late step in ER inheritance by phosphorylating a target at the tip of daughter cells. The PI4P5-kinase, Mss4p, is an upstream activator of this pool of Slt2p. Ptc1p-dependant inactivation of Slt2p is also needed for mitochondrial inheritance; however, in this case, the relevant pool of Slt2p is not at the bud tip.  相似文献   

9.
10.
The conserved family of RecQ DNA helicases consists of caretaker tumour suppressors, that defend genome integrity by acting on several pathways of DNA repair that maintain genome stability. In budding yeast, Sgs1 is the sole RecQ helicase and it has been implicated in checkpoint responses, replisome stability and dissolution of double Holliday junctions during homologous recombination. In this study we investigate a possible genetic interaction between SGS1 and RAD9 in the cellular response to methyl methane sulphonate (MMS) induced damage and compare this with the genetic interaction between SGS1 and RAD24. The Rad9 protein, an adaptor for effector kinase activation, plays well-characterized roles in the DNA damage checkpoint response, whereas Rad24 is characterized as a sensor protein also in the DNA damage checkpoint response. Here we unveil novel insights into the cellular response to MMS-induced damage. Specifically, we show a strong synergistic functionality between SGS1 and RAD9 for recovery from MMS induced damage and for suppression of gross chromosomal rearrangements, which is not the case for SGS1 and RAD24. Intriguingly, it is a Rad53 independent function of Rad9, which becomes crucial for genome maintenance in the absence of Sgs1. Despite this, our dissection of the MMS checkpoint response reveals parallel, but unequal pathways for Rad53 activation and highlights significant differences between MMS- and hydroxyurea (HU)-induced checkpoint responses with relation to the requirement of the Sgs1 interacting partner Topoisomerase III (Top3). Thus, whereas earlier studies have documented a Top3-independent role of Sgs1 for an HU-induced checkpoint response, we show here that upon MMS treatment, Sgs1 and Top3 together define a minor but parallel pathway to that of Rad9.  相似文献   

11.

Background

In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established.

Results

Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof 1 /+; mnk p6 /+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks.

Conclusion

mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway.  相似文献   

12.
A genetic screen was devised to identify Saccharomyces cerevisiae splicing factors that are important for the function of the 5′ end of U2 snRNA. Six slt (stands for synthetic lethality with U2) mutants were isolated on the basis of synthetic lethality with a U2 snRNA mutation that perturbs the U2-U6 snRNA helix II interaction. SLT11 encodes a new splicing factor and SLT22 encodes a new RNA-dependent ATPase RNA helicase (D. Xu, S. Nouraini, D. Field, S. J. Tang, and J. D. Friesen, Nature 381:709–713, 1996). The remaining four slt mutations are new alleles of previously identified splicing genes: slt15, previously identified as prp17 (slt15/prp17-100), slt16/smd3-1, slt17/slu7-100, and slt21/prp8-21. slt11-1 and slt22-1 are synthetically lethal with mutations in the 3′ end of U6 snRNA, a region that affects U2-U6 snRNA helix II; however, slt17/slu7-100 and slt21/prp8-21 are not. This difference suggests that the latter two factors are unlikely to be involved in interactions with U2-U6 snRNA helix II but rather are specific to interactions with U2 snRNA. Pairwise synthetic lethality was observed among slt11-1 (which affects the first step of splicing) and several second-step factors, including slt15/prp17-100, slt17/slu7-100, and prp16-1. Mutations in loop 1 of U5 snRNA, a region that is implicated in the alignment of the two exons, are synthetically lethal with slu4/prp17-2 and slu7-1 (D. Frank, B. Patterson, and C. Guthrie, Mol. Cell. Biol. 12:5179–5205, 1992), as well as with slt11-1, slt15/prp17-100, slt17/slu7-100, and slt21/prp8-21. These same U5 snRNA mutations also interact genetically with certain U2 snRNA mutations that lie in the helix I and helix II regions of the U2-U6 snRNA structure. Our results suggest interactions among U2 snRNA, U5 snRNA, and Slt protein factors that may be responsible for coupling and coordination of the two reactions of pre-mRNA splicing.  相似文献   

13.
The yeast Chk2/Chk1 homolog Rad53 is a central component of the DNA damage checkpoint system. While it controls genotoxic stress responses such as cell cycle arrest, replication fork stabilization and increase in dNTP pools, little is known about the consequences of reduced Rad53 levels on the various cellular endpoints or about its roles in dealing with chronic vs. acute genotoxic challenges. Using a tetraploid gene dosage model in which only one copy of the yeast RAD53 is functional (simplex), we found that the simplex strain was not sensitive to acute UV radiation or chronic MMS exposure. However, the simplex strain was sensitized to chronic exposure of the ribonucleotide reductase inhibitor hydroxyurea (HU). Surprisingly, reduced RAD53 gene dosage did not affect sensitivity to HU acute exposure, indicating that immediate checkpoint responses and recovery from HU-induced stress were not compromised. Interestingly, cells of most of the colonies that arise after chronic HU exposure acquired heritable resistance to HU. We also found that short HU exposure before and after treatment of G2 cells with ionizing radiation (IR) reduced the capability of RAD53 simplex cells to repair DSBs, in agreement with sensitivity of RAD53 simplex strain to high doses of IR. We propose that a modest reduction in Rad53 activity can impact the activation of the ribonucleotide reductase catalytic subunit Rnr1 following stress, reducing the ability to generate nucleotide pools sufficient for DNA repair and replication. At the same time, reduced Rad53 activity may lead to genome instability and to the acquisition of drug resistance before and/or during the chronic exposure to HU. These results have implications for developing drug enhancers as well as for understanding mechanisms of drug resistance in cells compromised for DNA damage checkpoint.  相似文献   

14.
Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.  相似文献   

15.
16.
17.
The checkpoint kinase Hsl1p is activated by Elm1p-dependent phosphorylation   总被引:1,自引:1,他引:0  
Saccharomyces cerevisiae cells growing in the outdoor environment must adapt to sudden changes in temperature and other variables. Many such changes trigger stress responses that delay bud emergence until the cells can adapt. In such circumstances, the morphogenesis checkpoint delays mitosis until a bud has been formed. Mitotic delay is due to the Wee1 family mitotic inhibitor Swe1p, whose degradation is linked to bud emergence by the checkpoint kinase Hsl1p. Hsl1p is concentrated at the mother-bud neck through association with septin filaments, and it was reported that Hsl1p activation involved relief of autoinhibition in response to septin interaction. Here we challenge the previous identification of an autoinhibitory domain and show instead that Hsl1p activation involves the phosphorylation of threonine 273, promoted by the septin-associated kinase Elm1p. We identified elm1 mutants in a screen for defects in Swe1p degradation and show that a phosphomimic T273E mutation in HSL1 bypasses the need for Elm1p in this pathway.  相似文献   

18.
MKK1/MKK2 and SLT2 ( MPK1 ) are three Saccharomyces cerevisiae genes, coding for protein kinases, that have been postulated to act sequentially as part of the Pkc1p signalling pathway, a phosphorylation cascade essential for cell integrity. By using the 'two-hybrid system' and co-purification experiments on glutathione-agarose beads, we have shown that Slt2p interacts in vivo and in vitro with both Mkk1p and Mkk2p, thus confirming a previous suggestion based on epistasis experiments of the corresponding genes. Plasmid constructs of the SLT2 gene, deleted in the whole C-terminal non-kinase region or part of it, and therefore containing all of the conserved kinase subdomains, were still functional in complementation of the slt2 lytic phenotype and in vivo interaction with Mkk1p and Mkk2p. In contrast, the Slt2p C-terminal domain (162 residues) that carries a glutamine-rich fragment followed by a 16 polyglutamine tract, was shown to be dispensable for complementation and in vivo association with Mkk1p and Mkk2p. We have also demonstrated that the N-terminal putative regulatory domain of these two MAP kinase activators is the main region involved in the interaction with Slt2p.  相似文献   

19.

Background

The MYC protein controls cellular functions such as differentiation, proliferation, and apoptosis. In response to genotoxic agents, cells overexpressing MYC undergo apoptosis. However, the MYC-regulated effectors acting upstream of the mitochondrial apoptotic pathway are still unknown.

Principal Findings

In this study, we demonstrate that expression of Myc is required to activate the Ataxia telangiectasia mutated (ATM)-dependent DNA damage checkpoint responses in rat cell lines exposed to ionizing radiation (IR) or the bacterial cytolethal distending toxin (CDT). Phosphorylation of the ATM kinase and its downstream effectors, such as histone H2AX, were impaired in the myc null cell line HO15.19, compared to the myc positive TGR-1 and HOmyc3 cells. Nuclear foci formation of the Nijmegen Breakage Syndrome (Nbs) 1 protein, essential for efficient ATM activation, was also reduced in absence of myc. Knock down of the endogenous levels of MYC by siRNA in the human cell line HCT116 resulted in decreased ATM and CHK2 phosphorylation in response to irradiation. Conversely, cell death induced by UV irradiation, known to activate the ATR-dependent checkpoint, was similar in all the cell lines, independently of the myc status.

Conclusion

These data demonstrate that MYC contributes to the activation of the ATM-dependent checkpoint responses, leading to cell death in response to specific genotoxic stimuli.  相似文献   

20.
The evolutionally conserved Fun30 chromatin remodeler in Saccharomyces cerevisiae has been shown to contribute to cellular resistance to genotoxic stress inflicted by camptothecin (CPT), methyl methanesulfonate (MMS) and hydroxyurea (HU). Fun30 aids in extensive DNA resection of DNA double stranded break (DSB) ends, which is thought to underlie its role in CPT-resistance. How Fun30 promotes MMS- or HU-resistance has not been resolved. Interestingly, we have recently found Fun30 to also play a negative role in cellular tolerance to MMS and HU in the absence of the Rad5-dependent DNA damage tolerance pathway. In this report, we show that Fun30 acts to down regulate Rad9-dependent DNA damage checkpoint triggered by CPT or MMS, but does not affect Rad9-independent intra-S phase replication checkpoint induced by MMS or HU. These results support the notion that Fun30 contributes to cellular response to DSBs by preventing excessive DNA damage checkpoint activation in addition to its role in facilitating DNA end resection. On the other hand, we present evidence suggesting that Fun30’s negative function in MMS- and HU-tolerance in the absence of Rad5 is not related to its regulation of checkpoint activity. Moreover, we find Fun30 to be cell cycle regulated with its abundance peaking in G2/M phase of the cell cycle. Importantly, we demonstrate that artificially restricting Fun30 expression to G2/M does not affect its positive or negative function in genotoxin-resistance, but confining Fun30 to S phase abolishes its functions. These results indicate that both positive and negative functions of Fun30 in DNA damage response occur mainly in G2/M phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号