首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Like other coronaviruses, severe acute respiratory syndrome coronavirus (SARS CoV) assembles at and buds into the lumen of the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). Accumulation of the viral envelope proteins at this compartment is a prerequisite for virus assembly. Previously, we reported the identification of a dibasic motif (KxHxx) in the cytoplasmic tail of the SARS CoV spike (S) protein that was similar to a canonical dilysine ER retrieval signal. Here we demonstrate that this motif is a novel and functional ER retrieval signal which reduced the rate of traffic of the full-length S protein through the Golgi complex. The KxHxx motif also partially retained two different reporter proteins in the ERGIC region and reduced their rates of trafficking, although the motif was less potent than the canonical dilysine signal. The dibasic motif bound the coatomer complex I (COPI) in an in vitro binding assay, suggesting that ER retrieval may contribute to the accumulation of SARS CoV S protein near the virus assembly site for interaction with other viral structural proteins. In support of this, we found that the dibasic motif on the SARS S protein was required for its localization to the ERGIC/Golgi region when coexpressed with SARS membrane (M) protein. Thus, the cycling of SARS S through the ER-Golgi system may be required for its incorporation into assembling virions in the ERGIC.  相似文献   

2.
Ward BM  Moss B 《Journal of virology》2000,74(8):3771-3780
The vaccinia virus B5R type I integral membrane protein accumulates in the Golgi network, from where it becomes incorporated into the envelope of extracellular virions. Our objective was to determine the domains of B5R responsible for Golgi membrane targeting in the absence of other viral components. Fusion of an enhanced green fluorescent protein to the C terminus of B5R allowed imaging of the chimeric protein without altering intracellular trafficking and Golgi network localization in transfected cells. Deletion or swapping of B5R domains with corresponding regions of the vesicular stomatitis virus G protein, which is targeted to the plasma membrane, indicated that (i) the N-terminal extracellular domain of B5R had no specific role in Golgi apparatus localization, (ii) the transmembrane domain of B5R was sufficient for exiting the endoplasmic reticulum, and (iii) removal of the cytoplasmic tail impaired Golgi network localization and increased the accumulation of B5R in the plasma membrane. Further experiments demonstrated that the cytoplasmic tail mediated internalization of B5R from the plasma membrane, suggesting a retrieval mechanism. Mutagenesis revealed residues required for Golgi membrane localization and efficient plasma membrane retrieval of the B5R protein: a tyrosine at residue 310 and two adjacent leucines at residues 315 and 316.  相似文献   

3.
Coronavirus budding at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) requires accumulation of the viral envelope proteins at this point in the secretory pathway. Here we demonstrate that the spike (S) protein from the group 3 coronavirus infectious bronchitis virus (IBV) contains a canonical dilysine endoplasmic reticulum retrieval signal (-KKXX-COOH) in its cytoplasmic tail. This signal can retain a chimeric reporter protein in the ERGIC and when mutated allows transport of the full-length S protein as well as the chimera to the plasma membrane. Interestingly, the IBV S protein also contains a tyrosine-based endocytosis signal in its cytoplasmic tail, suggesting that any S protein that escapes the ERGIC will be rapidly endocytosed when it reaches the plasma membrane. We also identified a novel dibasic motif (-KXHXX-COOH) in the cytoplasmic tails of S proteins from group 1 coronaviruses and from the newly identified coronavirus implicated in severe acute respiratory syndrome. This dibasic motif also retained a reporter protein in the ERGIC, similar to the dilysine motif in IBV S. The cytoplasmic tails of S proteins from group 2 coronaviruses lack an intracellular localization signal. The inherent differences in S-protein trafficking could point to interesting variations in pathogenesis of coronaviruses, since increased levels of surface S protein could promote syncytium formation and direct cell-to-cell spread of the infection.  相似文献   

4.
The role of the transmembrane and the cytoplasmic regions of viral glycoproteins namely, the envelope glycoprotein gD of herpes simplex virus and the integral membrane glycoprotein E3-11.6 K of the nonenveloped adenovirus that are localized in the nuclear envelope has been studied. Chimeras of the cell surface glycoprotein G of vesicular stomatitis virus containing the transmembrane and (or) the cytoplasmic-tail domains of either herpes simplex virus gD or adenovirus E3-11.6 K protein were examined for their intracellular transport and localization. The results show that hybrids containing the membrane anchoring and (or) the cytoplasmic tail domains of either herpes simplex virus gD or adenovirus E3-11.6 K glycoprotein were localized in the nuclear envelope as well as in the endoplasmic reticulum and the Golgi complex. These results suggest that the membrane anchoring and the cytoplasmic domains of herpes simplex virus glycoproteins gD, as well as the adenovirus integral membrane protein E3-11.6 K, were necessary for localization in the nuclear envelope and could influence retention in the endoplasmic reticulum and the Golgi complex.  相似文献   

5.
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes 3 major envelope proteins: spike (S), membrane (M), and envelope (E). Previous work identified a dibasic endoplasmic reticulum retrieval signal in the cytoplasmic tail of SARS-CoV S that promotes efficient interaction with SARS-CoV M. The dibasic signal was shown to be important for concentrating S near the virus assembly site rather than for direct interaction with M. Here, we investigated the sequence requirements of the SARS-CoV M protein that are necessary for interaction with SARS-CoV S. The SARS-CoV M tail was shown to be necessary for S localization in the Golgi region when the proteins were exogenously coexpressed in cells. This was specific, since SARS-CoV M did not retain an unrelated glycoprotein in the Golgi. Importantly, we found that an essential tyrosine residue in the SARS-CoV M cytoplasmic tail, Y195, was important for S-M interaction. When Y195 was mutated to alanine, MY195A no longer retained S intracellularly at the Golgi. Unlike wild-type M, MY195A did not reduce the amount of SARS-CoV S carbohydrate processing or surface levels when the two proteins were coexpressed. Mutating Y195 also disrupted SARS-CoV S-M interaction in vitro. These results suggest that Y195 is necessary for efficient SARS-CoV S-M interaction and, thus, has a significant involvement in assembly of infectious virus.Coronaviruses are enveloped positive-strand RNA viruses that infect a wide variety of mammalian and avian species. These viruses generally cause mild disease in humans and are one major cause of the common cold (34). However, severe acute respiratory syndrome coronavirus (SARS-CoV), a novel human coronavirus which emerged in the Guangdong province in China in 2002 (30, 48), caused a widespread pandemic. SARS-CoV caused severe disease with a mortality rate of approximately 10%, the highest for any human coronavirus to date (62). The phylogeny and group classification of SARS-CoV remain controversial (17), but it is widely accepted to be a distant member of group 2. While SARS-CoV is no longer a major health threat, understanding the basic biology of this human pathogen remains important.Coronaviruses encode three major envelope proteins in addition to various nonstructural and accessory proteins. The envelope protein (E) is the least abundant structural protein in the virion envelope, although it is expressed at robust levels during infection (21). E plays an essential role in assembly for some but not all coronaviruses (31-33, 45) and may also be a viroporin (reviewed in reference 21). The spike glycoprotein (S) is the second most abundant protein in the envelope. S determines host cell tropism, binds the host receptor, and is responsible for virus-cell, as well as cell-cell, fusion (15). The S protein is a type I membrane protein with a large, heavily glycosylated luminal domain and a short cytoplasmic tail that has been shown to be palmitoylated in some coronaviruses (47, 58). The membrane protein (M) is the most abundant protein in the virion envelope and acts as a scaffold for virus assembly. M has three transmembrane domains, a long cytoplasmic tail, and a short glycosylated luminal domain (reviewed in reference 21). Unlike many enveloped viruses, coronaviruses assemble at and bud into the lumen of the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) and exit the infected cell by exocytosis (29). In order to accomplish this, the envelope proteins must be targeted to the budding compartment for assembly.For most coronaviruses, the E and M proteins localize in the Golgi region near the budding site independently of other viral structural proteins. We have previously shown for infectious bronchitis virus (IBV) E protein that the cytoplasmic tail contains Golgi targeting information (9). IBV M contains Golgi targeting information in its first transmembrane domain (57), while the transmembrane domains and cytoplasmic tail of mouse hepatitis virus (MHV) M appear to play a role in Golgi targeting (1, 36). Some coronavirus S proteins contain targeting information in their cytoplasmic tails; however, some do not (38, 39, 52, 63). Since S proteins can escape to the cell surface when highly expressed, S may rely on lateral interactions with other viral envelope proteins to localize to the budding site and be incorporated into newly assembling virions.In line with its role in virus assembly, M is necessary for virus-like particle (VLP) formation (3, 10, 26, 40, 55, 59). M has been shown to interact with itself to form homo-oligomers (12). In addition, M interacts with E, S, and the viral nucleocapsid and is essential for virion assembly (reviewed in reference 21). Lateral interactions between the coronavirus envelope proteins are critical for efficient virus assembly. The interaction of S and M has been studied for MHV, and the cytoplasmic tail of each protein is important for interaction (16, 44). Specifically, deletion of an amphipathic region in the MHV M cytoplasmic tail abrogates efficient interaction with MHV S (11). The S and M proteins of IBV, bovine coronavirus, feline infectious peritonitis virus, and SARS-CoV have been shown to interact; however, information about the specific regions that are important for interaction remains elusive (16, 22, 26, 42, 64). Due to the presence of several accessory proteins in the virion envelope (23-25, 28, 51, 53), it is possible that the requirements for SARS-CoV S and M interaction could be different from those of previously studied coronaviruses.In earlier work, we reported that SARS-CoV M retains SARS-CoV S intracellularly at the Golgi region when both proteins are expressed exogenously (39). We also demonstrated that the SARS-CoV S cytoplasmic tail interacts with in vitro-transcribed and -translated SARS-CoV M (39). Here, we show that the SARS-CoV M cytoplasmic tail is necessary for specific retention of SARS-CoV S at the Golgi region. We found a critical tyrosine residue at position 195 to be important for retaining SARS-CoV S Golgi membranes when coexpressed with M. When Y195 was mutated to alanine, the mutant protein, MY195A, did not reduce the amount of SARS-CoV S at the plasma membrane or reduce the extent of S carbohydrate processing as well as wild-type SARS-CoV M does. Additionally, mutation of Y195 in SARS-CoV M disrupted the S-M interaction in vitro. Thus, Y195 is likely to play a critical role in the assembly of infectious SARS-CoV.  相似文献   

6.
为了解重症急性呼吸综合征冠状病毒(SARS—CoV)表面S蛋白的受体结合功能域及其在宿主细胞上的作用受体,应用PCR技术从SARS—CoV cDNA中克隆到S蛋白的全长基因,并构建了S蛋白与疱疹性口腔炎病毒胞膜蛋白(VSV—G)融合表达载体pVSV—G‘-SG,进而为制备含有SARS—CoVS蛋白膜外区的逆转录病毒假毒粒奠定了实验基础。  相似文献   

7.
Coronaviruses (CoV) mature by a budding process at intracellular membranes. Here we showed that the major surface protein S of a porcine CoV (transmissible gastroenteritis virus) is not transported to the cell surface but is retained intracellularly. Site-directed mutagenesis indicated that a tyrosine-dependent signal (YXXI) in the cytoplasmic tail is essential for intracellular localization of the S protein. Surface expression of mutant proteins was evident by immunofluorescence analysis and surface biotinylation. Intracellularly retained S proteins only contained endoglycosidase H-sensitive N-glycans, whereas mutant proteins that migrated to the plasma membrane acquired N-linked oligosaccharides of the complex type. Corresponding tyrosine residues are present in the cytoplasmic tails of the S proteins of other animal CoV but not in the tail portion of the S protein of severe acute respiratory syndrome (SARS)-CoV. Changing the SEPV tetrapeptide in the cytoplasmic tail to YEPI resulted in intracellular retention of the S protein of SARS-CoV. As the S proteins of CoV have receptor binding and fusion activities and are the main target of neutralizing antibodies, the differences in the transport behavior of the S proteins suggest different strategies in the virus host interactions between SARS-CoV and other coronaviruses.  相似文献   

8.
In addition to a set of canonical genes, coronaviruses encode additional accessory proteins. A locus located between the spike and envelope genes is conserved in all coronaviruses and contains a complete or truncated open reading frame (ORF). Previously, we demonstrated that this locus, which contains the gene for accessory protein 3a from severe acute respiratory syndrome coronavirus (SARS-CoV), encodes a protein that forms ion channels and regulates virus release. In the current study, we explored whether the ORF4a protein of HCoV-229E has similar functions. Our findings revealed that the ORF4a proteins were expressed in infected cells and localized at the endoplasmic reticulum/Golgi intermediate compartment (ERGIC). The ORF4a proteins formed homo-oligomers through disulfide bridges and possessed ion channel activity in both Xenopus oocytes and yeast. Based on the measurement of conductance to different monovalent cations, the ORF4a was suggested to form a non-selective channel for monovalent cations, although Li+ partially reduced the inward current. Furthermore, viral production decreased when the ORF4a protein expression was suppressed by siRNA in infected cells. Collectively, this evidence indicates that the HCoV-229E ORF4a protein is functionally analogous to the SARS-CoV 3a protein, which also acts as a viroporin that regulates virus production. This article is part of a Special Issue entitled: Viral Membrane Proteins — Channels for Cellular Networking.  相似文献   

9.
SARS coronavirus (SARS-CoV) encodes several unique group-specific open reading frames (ORFs) relative to other known coronaviruses. To determine the significance of the SARS-CoV group-specific ORFs in virus replication in vitro and in mice, we systematically deleted five of the eight group-specific ORFs, ORF3a, OF3b, ORF6, ORF7a, and ORF7b, and characterized recombinant virus replication and gene expression in vitro. Deletion of the group-specific ORFs of SARS-CoV, either alone or in various combinations, did not dramatically influence replication efficiency in cell culture or in the levels of viral RNA synthesis. The greatest reduction in virus growth was noted following ORF3a deletion. SARS-CoV spike (S) glycoprotein does not encode a rough endoplasmic reticulum (rER)/Golgi retention signal, and it has been suggested that ORF3a interacts with and targets S glycoprotein retention in the rER/Golgi apparatus. Deletion of ORF3a did not alter subcellular localization of the S glycoprotein from distinct punctuate localization in the rER/Golgi apparatus. These data suggest that ORF3a plays little role in the targeting of S localization in the rER/Golgi apparatus. In addition, insertion of the 29-bp deletion fusing ORF8a/b into the single ORF8, noted in early-stage SARS-CoV human and civet cat isolates, had little if any impact on in vitro growth or RNA synthesis. All recombinant viruses replicated to wild-type levels in the murine model, suggesting that either the group-specific ORFs play little role in in vivo replication efficiency or that the mouse model is not of sufficient quality for discerning the role of the group-specific ORFs in disease origin and development.  相似文献   

10.
The E protein is a multifunctional membrane protein of SARS-CoV   总被引:1,自引:0,他引:1  
The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analyses of SARS-CoV. Based on genome sequencing, we predicted the E protein is a transmembrane (TM) protein characterized by a TM region with strong hydrophobicity and α-helix conformation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in the carboxyl-terminal region of the E protein that appears to form three disulfide bonds with another segment of corresponding cysteines in the carboxyl-terminus of the S (spike) protein. These bonds point to a possible structural association between the E and S proteins. Our phylogenetic analyses of the E protein sequences in all published coronaviruses place SARS-CoV in an independent group in Coronaviridae and suggest a non-human animal origin.  相似文献   

11.
The severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is one of the opening reading frames in the viral genome with no homologue in other known coronaviruses. Expression of the 3a protein has been demonstrated during both in vitro and in vivo infection. Here we present biochemical data to show that 3a is a novel coronavirus structural protein. 3a was detected in virions purified from SARS-CoV infected Vero E6 cells although two truncated products were present predominantly instead of the full-length protein. In Vero E6 cells transiently transfected with a cDNA construct for expressing 3a, a similar cleavage was observed. Furthermore, co-expression of 3a, membrane and envelope proteins using the baculovirus system showed that both full-length and truncated 3a can be assembled into virus-like particles. This is the first report that demonstrated the incorporation of 3a into virion and showed that the SARS-CoV encodes a novel coronavirus structural protein.  相似文献   

12.
The primary membrane of vaccinia virus, as well as those of other poxviruses, forms within a discrete cytoplasmic factory region. We recently determined the existence of an operative pathway from the endoplasmic reticulum within the virus factory to nascent viral membranes and demonstrated that a viral protein could be diverted from this pathway to Golgi membranes by the addition of COPII-binding sites (M. Husain, A. S. Weisberg, and B. Moss, Proc. Natl. Acad. Sci. USA, 103:19506-19511, 2006). Here we describe an investigation of the structural features that are required for transit of proteins to the viral membrane. Deletion of either the N-terminal domain or the C-terminal cytoplasmic tail from the conserved A9 protein did not prevent its incorporation into viral membranes, whereas deletion of the transmembrane domain resulted in its distribution throughout the cytoplasm. Nevertheless, replacement of the A9 transmembrane domain with the corresponding region of a nonpoxvirus transmembrane protein or of a vaccinia virus extracellular envelope protein allowed viral membrane targeting, indicating no requirement for a specific amino acid sequence. Remarkably, the epitope-tagged A9 transmembrane domain alone, as well as a heterologous transmembrane domain lacking a poxvirus sequence, was sufficient for viral membrane association. The data are consistent with a sequence-independent pathway in which transmembrane proteins that are synthesized within the virus factory and lack COPII or other binding sites that enable conventional endoplasmic reticulum exiting are incorporated into nascent viral membranes.  相似文献   

13.
The severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a protein has recently been shown to be a structural protein. The protein is encoded by one of the so-called group-specific genes and has no sequence homology with any of the known structural or group-specific proteins of coronaviruses. It does, however, have several similarities to the coronavirus M proteins; (i) they are triple membrane spanning with the same topology, (ii) they have similar intracellular localizations (predominantly Golgi), (iii) both are viral structural proteins, and (iv) they appear to interact with the E and S proteins, as well as with each other. The M protein plays a crucial role in coronavirus assembly and is glycosylated in all coronaviruses, either by N-linked or by O-linked oligosaccharides. The conserved glycosylation of the coronavirus M proteins and the resemblance of the 3a protein to them led us to investigate the glycosylation of these two SARS-CoV membrane proteins. The proteins were expressed separately using the vaccinia virus T7 expression system, followed by metabolic labeling. Pulse-chase analysis showed that both proteins were modified, although in different ways. While the M protein acquired cotranslationally oligosaccharides that could be removed by PNGaseF, the 3a protein acquired its modifications posttranslationally, and they were not sensitive to the N-glycosidase enzyme. The SARS-CoV 3a protein, however, was demonstrated to contain sialic acids, indicating the presence of oligosaccharides. O-glycosylation of the 3a protein was indeed confirmed using an in situ O-glycosylation assay of endoplasmic reticulum-retained mutants. In addition, we showed that substitution of serine and threonine residues in the ectodomain of the 3a protein abolished the addition of the O-linked sugars. Thus, the SARS-CoV 3a protein is an O-glycosylated glycoprotein, like the group 2 coronavirus M proteins but unlike the SARS-CoV M protein, which is N glycosylated.  相似文献   

14.
A novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), has recently been identified as the causative agent of severe acute respiratory syndrome (SARS). SARS-CoV appears similar to other coronaviruses in both virion structure and genome organization. It is known for other coronaviruses that the spike (S) glycoprotein is required for both viral attachment to permissive cells and for fusion of the viral envelope with the host cell membrane. Here we describe the construction and expression of a soluble codon-optimized SARS-CoV S glycoprotein comprising the first 1,190 amino acids of the native S glycoprotein (S(1190)). The codon-optimized and native S glycoproteins exhibit similar molecular weight as determined by Western blot analysis, indicating that synthetic S glycoprotein is modified correctly in a mammalian expression system. S(1190) binds to the surface of Vero E6 cells, a cell permissive to infection, as demonstrated by fluorescence-activated cell sorter analysis, suggesting that S(1190) maintains the biologic activity present in native S glycoprotein. This interaction is blocked with serum obtained from recovering SARS patients, indicating that the binding is specific. In an effort to map the ligand-binding domain of the SARS-CoV S glycoprotein, carboxy- and amino-terminal truncations of the S(1190) glycoprotein were constructed. Amino acids 270 to 510 were the minimal receptor-binding region of the SARS-CoV S glycoprotein as determined by flow cytometry. We speculate that amino acids 1 to 510 of the SARS-CoV S glycoprotein represent a unique domain containing the receptor-binding site (amino acids 270 to 510), analogous to the S1 subunit of other coronavirus S glycoproteins.  相似文献   

15.
Major histocompatibility complex (MHC) class I molecules assemble with peptides in the ER lumen and are transported via Golgi to the plasma membrane for recognition by T cells. Inhibiting MHC assembly, transport, and surface expression are common viral strategies of evading immune recognition. Cowpox virus, a clinically relevant orthopoxvirus, downregulates MHC class I expression on infected cells. However, the viral protein(s) and mechanisms responsible are unknown. We identify CPXV203 as a cowpox virus protein that associates with fully assembled MHC class I molecules and blocks their transport through the Golgi. A C-terminal KTEL motif in CPXV203 closely resembles the canonical ER retention motif KDEL and is required for CPXV203 function, indicating that a physiologic pathway is exploited to retain MHC class I in the ER. This viral mechanism for MHC class I downregulation may explain virulence differences between clinical isolates of orthopoxviruses.  相似文献   

16.
Brock SC  Heck JM  McGraw PA  Crowe JE 《Journal of virology》2005,79(19):12528-12535
The processes that facilitate transport of integral membrane proteins though the secretory pathway and subsequently target them to particular cellular membranes are relevant to almost every field of biology. These transport processes involve integration of proteins into the membrane of the endoplasmic reticulum (ER), passage from the ER to the Golgi, and post-Golgi trafficking. The respiratory syncytial virus (RSV) fusion (F) protein is a type I integral membrane protein that is uniformly distributed on the surface of infected nonpolarized cells and localizes to the apical plasma membrane of polarized epithelial cells. We expressed wild-type or altered RSV F proteins to gain a better understanding of secretory transport and plasma membrane targeting of type I membrane proteins in polarized and nonpolarized epithelial cells. Our findings reveal a novel, orientation-independent apical plasma membrane targeting function for the transmembrane domain of the RSV F protein in polarized epithelial cells. This work provides a basis for a more complete understanding of the role of the transmembrane domain and cytoplasmic tail of viral type I integral membrane proteins in secretory transport and plasma membrane targeting in polarized and nonpolarized cells.  相似文献   

17.
The Us9 protein is a phosphorylated membrane protein present in the lipid envelope of pseudorabies virus (PRV) particles in a unique tail-anchored type II membrane topology. In this report, we demonstrate that the steady-state residence of the Us9 protein is in a cellular compartment in or near the trans-Golgi network (TGN). Through internalization assays with an enhanced green fluorescent protein epitope-tagged Us9 protein, we demonstrate that the maintenance of Us9 to the TGN region is a dynamic process involving retrieval of molecules from the cell surface. Deletion analysis of the cytoplasmic tail reveals that an acidic cluster containing putative phosphorylation sites is necessary for the recycling of Us9 from the plasma membrane. The absence of this cluster results in the relocalization of Us9 to the plasma membrane due to a defect in endocytosis. The acidic motif, however, does not contain signals needed to direct the incorporation of Us9 into viral envelopes. In this study, we also investigate the role of a dileucine endocytosis signal in the Us9 cytoplasmic tail in the recycling and retention of Us9 to the TGN region. Site-directed mutagenesis of the dileucine motif results in an increase in Us9 plasma membrane staining and a partial internalization defect.  相似文献   

18.
Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS.  相似文献   

19.
Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.  相似文献   

20.
Members of the Bunyaviridae family acquire an envelope by budding through the lipid bilayer of the Golgi complex. The budding compartment is thought to be determined by the accumulation of the two heterodimeric membrane glycoproteins G1 and G2 in the Golgi. We recently mapped the retention signal for Golgi localization in one Bunyaviridae member (Uukuniemi virus) to the cytoplasmic tail of G1. We now show that a myc-tagged 81-residue G1 tail peptide expressed in BHK21 cells is efficiently targeted to the Golgi complex and retained there during a 3-h chase. Green-fluorescence protein tagged at either end with this peptide or with a C-terminally truncated 60-residue G1 tail peptide was also efficiently targeted to the Golgi. The 81-residue peptide colocalized with mannosidase II (a medial Golgi marker) and partially with p58 (an intermediate compartment marker) and TGN38 (a trans-Golgi marker). In addition, the 81-residue tail peptide induced the formation of brefeldin A-resistant vacuoles that did not costain with markers for other membrane compartments. Removal of the first 10 N-terminal residues had no effect on the Golgi localization but abolished the vacuolar staining. The shortest peptide still able to become targeted to the Golgi encompassed residues 10 to 40. Subcellular fractionation showed that the 81-residue tail peptide was associated with microsomal membranes. Removal of the two palmitylation sites from the tail peptide did not affect Golgi localization and had only a minor effect on the association with microsomal membranes. Taken together, the results provide strong evidence that Golgi retention of the heterodimeric G1-G2 spike protein complex of Uukuniemi virus is mediated by a short region in the cytoplasmic tail of the G1 glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号