首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: The Canadian Institutes of Health Research (CIHR) has defined knowledge translation (KT) as a dynamic and iterative process that includes the synthesis, dissemination, exchange, and ethically-sound application of knowledge to improve the health of Canadians, provide more effective health services and products, and strengthen the healthcare system. CIHR, the national health research funding agency in Canada, has undertaken to advance this concept through direct research funding opportunities in KT. Because CIHR is recognized within Canada and internationally for leading and funding the advancement of KT science and practice, it is essential and timely to evaluate this intervention, and specifically, these funding opportunities. DESIGN: The study will employ a novel method of participatory, utilization-focused evaluation inspired by the principles of integrated KT. It will use a mixed methods approach, drawing on both quantitative and qualitative data, and will elicit participation from CIHR funded researchers, knowledge users, KT experts, as well as other health research funding agencies. Lines of inquiry will include an international environmental scan, document/data reviews, in-depth interviews, targeted surveys, case studies, and an expert review panel. The study will investigate how efficiently and effectively the CIHR model of KT funding programs operates, what immediate outcomes these funding mechanisms have produced, and what impact these programs have had on the broader state of health research, health research uptake, and health improvement. DISCUSSION: The protocol and results of this evaluation will be of interest to those engaged in the theory, practice, and evaluation of KT. The dissemination of the study protocol and results to both practitioners and theorists will help to fill a gap in knowledge in three areas: the role of a public research funding agency in facilitating KT, the outcomes and impacts KT funding interventions, and how KT can best be evaluated.  相似文献   

2.

Background

The recent growth in organized efforts to advance dissemination and implementation (D & I) science suggests a rapidly expanding community focused on the adoption and sustainment of evidence-based practices (EBPs). Although promising for the D & I of EBPs, the proliferation of initiatives is difficult for any one individual to navigate and summarize. Such proliferation may also result in redundant efforts or missed opportunities for participation and advancement. A review of existing D & I science resource initiatives and their unique merits would be a significant step for the field. The present study aimed to describe the global landscape of these organized efforts to advance D & I science.

Methods

We conducted a content analysis between October 2015 and March 2016 to examine resources and characteristics of D & I science resource initiatives using public, web-based information. Included resource initiatives must have engaged in multiple efforts to advance D & I science beyond conferences, offered D & I science resources, and provided content in English. The sampling method included an Internet search using D & I terms and inquiry among internationally representative D & I science experts. Using a coding scheme based on a priori and grounded approaches, two authors consensus coded website information including interactive and non-interactive resources and information regarding accessibility (membership, cost, competitive application, and location).

Results

The vast majority (83%) of resource initiatives offered at least one of seven interactive resources (consultation/technical assistance, mentorship, workshops, workgroups, networking, conferences, and social media) and one of six non-interactive resources (resource library, news and updates from the field, archived talks or slides, links pages, grant writing resources, and funding opportunities). Non-interactive resources were most common, with some appearing frequently across resource initiatives (e.g., news and updates from the field).

Conclusion

Findings generated by this study offer insight into what types of D & I science resources exist and what new resources may have the greatest potential to make a unique and needed contribution to the field. Additional interactive resources may benefit the field, particularly mentorship opportunities and resources that can be accessed virtually. Moving forward, it may be useful to consider strategic attention to the core tenets of D & I science put forth by Glasgow and colleagues to most efficiently and effectively advance the field.
  相似文献   

3.
Why is big Pharma getting out of antibacterial drug discovery?   总被引:8,自引:0,他引:8  
Since the advent of the antibiotic era in the late 1940s drug discovery and development has evolved into an expensive, time consuming, cumbersome and bureaucratic process involving multiple interest groups such as pharmaceutical manufacturers, governmental regulatory authorities, patent officers, academic and clinical researchers and trial lawyers. It would seem that the least involved among the interest groups are the consumers of health care themselves. Politicians and the public alike complain loudly about drug prices although fewer and fewer new therapies are being developed. The cost and complexities of drug discovery and development have shifted the investment equation away from the development of drugs targeting short course therapies for acute diseases and towards long-term treatment of chronic conditions. Coupled with the failure of large investments into target-based approaches to produce novel antibacterial agents, companies large and small have exited from this field despite a growing clinical need.  相似文献   

4.
In this article, the critical issues in the production of successful bioherbicides have been defined in an effort to stimulate discussion on the underlying science, art of formulation and fermentation and the business of producing and marketing of bioherbicides. To a large extent the science of bioherbicides has focussed on epidemiology, although the enormous potential of molecular technology to improve the efficacy of these agents is being investigated. Some of this potential is coming to fruition in terms of development of tools for the identification and tracking of biological controls, although the genetic modification of biological control agents is still in its infancy. On the other hand, knowledge in the areas of formulation and fermentation is often proprietary in nature. This makes it critical for researchers to work in collaboration with other researchers or industry in these areas. The importance of the appropriate involvement of industry and commercialization partners early in the development process should not be underestimated. Although ad hoc research into biological control should not be discouraged, researchers should be encouraged to think carefully before they postulate on the potential of a bioherbicide based purely on preliminary isolation and pathogenicity testing. As much of the research is specific to a single pathogen/host system, the way ahead in bioherbicide research would appear to be the development of consortia or research nodes in which scientists and business people with backgrounds in the discovery, development and commercialization of biopesticides work collaboratively on a number of projects. There has been movement towards this type of model in countries such as Canada, USA and New Zealand although other countries lag behind. Interestingly, all five of the recently registered bioherbicides in the U.S. and Canada were developed and registered by small-business enterprises or a subsidiary of enterprises with no prior record in pesticide development.The constraints to bioherbicides are not in the science, art or business: it is in bringing all of these aspects together in an accessible way and the sharing of intellectual property in an equitable fashion. A new model for the commercialization of bioherbicides should build on currently established research networks, but need to have a stronger link to industry (especially small–medium enterprises) and requires funding for infrastructure and personnel. This funding needs to come from the public sector. Industry is interested in engaging this type of research, but they need to be reassured that the approach is feasible, economic and realistic and that the resources required are available.  相似文献   

5.
There is a profound need for the scientific community to be better aware of the policy context in which it operates. To address this need, Evolution has established a new Outlook feature section to include papers that explore the interface between society and evolutionary biology. This first paper in the series considers the strategic relevance of evolutionary biology. Support for scientific research in general is based on governmental or institutional expenditure that is an investment, and such investment is based on strategies designed to achieve particular outcomes, such as advance in particular areas of basic science or application. The scientific community can engage in the development of scientific strategies on a variety of levels, including workshops to explicitly develop research priorities and targeted funding initiatives to help define emerging scientific areas. Better understanding and communication of the scientific achievements of evolutionary biology, emphasizing immediate and potential societal relevance, are effective counters to challenges presented by the creationist agenda. Future papers in the Outlook feature section should assist the evolutionary biology community in achieving a better collective understanding of the societal relevance of their field.  相似文献   

6.
《PloS one》2014,9(5)
Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.  相似文献   

7.
Many achievements in the genome sciences have been facilitated by policies that have prioritized genome research, secured funding and raised public and health-professional awareness. Such policies should address ethical, legal and social concerns, and are as important to the scientific and commercial development of the field as the science itself. On occasion, policy issues take precedence over science, particularly when impasses are encountered or when public health or money is at stake. Here we discuss the spectrum of current issues and debates in genome policy, and how to actively engage all affected stakeholders to promote effective policy making.  相似文献   

8.

Background

Research investments are essential to address the burden of disease, however allocation of limited resources is poorly documented. We systematically reviewed the investments awarded by funding organisations to UK institutions and their global partners for infectious disease research.

Methodology/Principal Findings

Public and philanthropic investments for the period 1997 to 2010 were included. We categorised studies by infectious disease, cross-cutting theme, and by research and development value chain, reflecting the type of science. We identified 6165 funded studies, with a total research investment of UK £2.6 billion. Public organisations provided £1.4 billion (54.0%) of investments compared with £1.1 billion (42.4%) by philanthropic organisations. Global health studies represented an investment of £928 million (35.7%). The Wellcome Trust was the leading investor with £688 million (26.5%), closely followed by the UK Medical Research Council (MRC) with £673 million (25.9%). Funding over time was volatile, ranging from ∼£40 million to ∼£160 million per year for philanthropic organisations and ∼£30 million to ∼£230 million for public funders.

Conclusions/Significance

Infectious disease research funding requires global coordination and strategic long-term vision. Our analysis demonstrates the diversity and inconsistent patterns in investment, with volatility in annual funding amounts and limited investment for product development and clinical trials.  相似文献   

9.

Background

Impact assessment (IA) of all major European Union (EU) policies is now mandatory. The form of IA used has been criticised for favouring corporate interests by overemphasising economic impacts and failing to adequately assess health impacts. Our study sought to assess how, why, and in what ways corporations, and particularly the tobacco industry, influenced the EU''s approach to IA.

Methods and Findings

In order to identify whether industry played a role in promoting this system of IA within the EU, we analysed internal documents from British American Tobacco (BAT) that were disclosed following a series of litigation cases in the United States. We combined this analysis with one of related literature and interviews with key informants. Our analysis demonstrates that from 1995 onwards BAT actively worked with other corporate actors to successfully promote a business-oriented form of IA that favoured large corporations. It appears that BAT favoured this form of IA because it could advance the company''s European interests by establishing ground rules for policymaking that would: (i) provide an economic framework for evaluating all policy decisions, implicitly prioritising costs to businesses; (ii) secure early corporate involvement in policy discussions; (iii) bestow the corporate sector with a long-term advantage over other actors by increasing policymakers'' dependence on information they supplied; and (iv) provide businesses with a persuasive means of challenging potential and existing legislation. The data reveal that an ensuing lobbying campaign, largely driven by BAT, helped secure binding changes to the EU Treaty via the Treaty of Amsterdam that required EU policymakers to minimise legislative burdens on businesses. Efforts subsequently focused on ensuring that these Treaty changes were translated into the application of a business orientated form of IA (cost–benefit analysis [CBA]) within EU policymaking procedures. Both the tobacco and chemical industries have since employed IA in apparent attempts to undermine key aspects of European policies designed to protect public health.

Conclusions

Our findings suggest that BAT and its corporate allies have fundamentally altered the way in which all EU policy is made by making a business-oriented form of IA mandatory. This increases the likelihood that the EU will produce policies that advance the interests of major corporations, including those that produce products damaging to health, rather than in the interests of its citizens. Given that the public health community, focusing on health IA, has largely welcomed the increasing policy interest in IA, this suggests that urgent consideration is required of the ways in which IA can be employed to undermine, as well as support, effective public health policies. Please see later in the article for the Editors'' Summary  相似文献   

10.
This article draws attention to the limited amount of scholarship on what constitutes fairness and equity in resource allocation to health research by individual funders. It identifies three key decisions of ethical significance about resource allocation that research funders make regularly and calls for prioritizing scholarship on those topics – namely, how health resources should be fairly apportioned amongst public health and health care delivery versus health research, how health research resources should be fairly allocated between health problems experienced domestically versus other health problems typically experienced by disadvantaged populations outside the funder's country, and how domestic and non‐domestic health research funding should be further apportioned to different areas, e.g. types of research and recipients. These three topics should be priorities for bioethics research because their outcomes have a substantial bearing on the achievement of health justice. The proposed agenda aims to move discussion on the ethics of health research funding beyond its current focus on the mismatch between worldwide basic and clinical research investment and the global burden of disease. Individual funders’ decision‐making on whether and to what extent to allocate resources to non‐domestic health research, health systems research, research on the social determinants of health, capacity development, and recipients in certain countries should also be the focus of ethical scrutiny.  相似文献   

11.
Aaron Wernham 《EcoHealth》2007,4(4):514-513
We report on the first Health Impact Assessment (HIA) for proposed oil and gas development in Alaska’s North Slope region. Public health is not generally analyzed in the Environmental Impact Statement (EIS) process in the U.S. We conducted an HIA for proposed oil development within the National Petroleum Reserve - Alaska in response to growing concerns among North Slope Inupiat communities regarding the potential impacts of regional industrial expansion on their health and culture. We employed a qualitative HIA methodology, involving a combination of stakeholder input, literature review, and qualitative analysis, through which we identified potential health effects. The possible health outcomes identified include increases in diabetes and related metabolic conditions as a result of dietary change; rising rates of substance abuse, domestic violence, and suicide; increased injury rates; more frequent asthma exacerbations; and increased exposure to organic pollutant, including carcinogens and endocrine disruptors. There are also potential benefits, including funding for infrastructure and health care; increased employment and income; and continued funding of existing infrastructure. Based on these findings, we recommend a series of public health mitigation measures. This project represents the first formal effort to include a systematic assessment of public health within the U.S. EIS process. The inclusion of public health concerns within an EIS may offer an important and underutilized avenue through which to argue for environmental management strategies that focus on public health, and may offer communities a stronger voice in the EIS process. An erratum to this article can be found at  相似文献   

12.
The recent unprecedented growth in infectious disease research funding and infrastructure has resulted in part from an outgrowth of concern about newly emerging and re-emerging diseases and the progressive development of antibiotic-resistant pathogens. However, the most compelling impetus is the suspected and demonstrated capability and will of unknown individuals, groups, or states to use biological agents and/or toxins as weapons. Although the actual number of known victims and fatalities from bioterrorism in the United States has been miniscule compared with many other daily hazards, biological agents have the potential to cause human mass casualties, severely damage segments of our economy or agricultural infrastructure, poison or compromise our food or water supply, and, perhaps most damaging, disrupt our society physically and psychologically. The significant institutional commitment necessary to participate in infectious disease research is described, with a focus on programs that involve research with pathogens thought to have potential for use by bioterrorists. Administrative considerations are described, and include obtaining necessary research funding to offset high operating costs; complying with "select agent" regulations, security screening of employees; building or renovating a biocontainment facility; finding skilled professional and technical manpower; providing adequate physical security in a threat environment; conducting targeted training; overcoming potential internal and external dissent; developing and/or providing sufficient occupational health and safety programs; achieving and maintaining compliance standards in a fluid regulatory environment; mitigating potentially hazardous working conditions; understanding personal and institutional liability; and reassuring and dealing with a concerned, skeptical, or even hostile public.  相似文献   

13.
The growing health disparities between the developing and the developed world call for urgent action from the scientific community. Science and technology have in the past played a vital role in improving public health. Today, with the tremendous potential of genomics and other advances in the life sciences, the contribution of science to improve public health and reduce global health disparities is more pertinent than ever before. Yet the benefits of modern medicine still have not reached millions of people in developing countries. It is crucial to recognize that science and technology can be used very effectively in partnership with public health practices in developing countries and can enhance their efficacy. The fight to improve global health needs, in addition to effective public health measures, requires rapid and efficient diagnostic tools; new vaccines and drugs, efficient delivery methods and novel approaches to therapeutics; and low-cost restoration of water, soil and other natural resources. In 2002, the University of Toronto published a report on the "Top 10 Biotechnologies for Improving Health in Developing Countries". Here we review these new and emerging biotechnologies and explore how they can be used to support the goals of developing countries in improving health.  相似文献   

14.
In recent years, a renewed interest in malaria elimination and eradication has emerged and seems to be rooting in the minds of the scientific community, public health specialists, funding bodies, policy makers and politicians. Malaria eradication will certainly benefit from improved and innovative tools; notwithstanding novel knowledge in fields ranging from basic science to mathematical modelling and health systems research. However, the elimination of malaria also encompasses a broad range of essential aspects that countries and other actors need to consider when thinking of embarking on such an adventure, including the implementation of innovative strategies, the ability to incorporate the most up-to-date evidence into policy, the integration of malaria into the broader health agenda, the strengthening of surveillance and health systems, capacity building, funding, advocacy and, very importantly, research. While in some cases this enthusiasm is clearly justified, some countries are still a long way from realistically advancing towards elimination. This paper attempts to provide guidance on all the necessary issues that should be considered when initiating a malaria elimination program.  相似文献   

15.
The development of food science in the near future probably depends on the advance in functional food science, the concept of which was proposed first in Japan nearly 15 years ago. The new science has been internationally distributed and accepted as conceptually being beyond nutrition. In Japan, however, it traced a unique path of progress in the form of a product-driven rather than concept-driven science. Actually, a number of substances and products with potential for disease risk reduction rather than simply for health maintenance have been investigated for their body-modulating functions. Some of them have been applied in practice to the industrialization of functional foods in terms of "foods for specified health uses" legally defined by new legislation. A variety of sophisticated methods have been introduced as well, including the so-called "XYZ" evaluation system, database construction for assessment of the function, and even the DNA microarray technique. The Ministry of Agriculture, Forestry, and Fisheries (MAFF) and the Ministry of Health and Welfare (MHW) also commenced their scientific as well as political activity, with its spread to industries which almost simultaneously began to vigorously investigate functional food products for enlargement of the food market. With all of this as a background, the Japan Liaison of the International Union of Food Science and Technology (IUFoST) hold a function food science symposium on behalf of related scientific bodies including the Japan Section of the International Life Science Institute (ILSI). This paper is an overview compiled from 12 presentations made in the symposium, with the aim of internationally publicizing the activity of functional food science in Japan.  相似文献   

16.
The advent of online publishing greatly facilitates the dissemination of scientific results. This revolution might have led to the untimely death of many traditional publishing companies, since today’s scientists are perfectly capable of writing, formatting and uploading files to appropriate websites that can be consulted by colleagues and the general public alike. They also have the intellectual resources to criticize each other and organize an anonymous peer review system. The Open Access approach appears promising in this respect, but we cannot ignore that it is fraught with editorial and economic problems. A few powerful publishing companies not only managed to survive, but also rake up considerable profits. Moreover, they succeeded in becoming influential ‘trendsetters’ since they decide which papers deserve to be published. To make money, one must set novel trends, like Christian Dior or Levi’s in fashion, and open new markets, for example in Asia. In doing so, the publishers tend to supplant both national and transnational funding agencies in defining science policy. In many cases, these agencies tend simply to adopt the commercial criteria defined by the journals, forever eager to improve their impact factors. It is not obvious that the publishers of scientific journals, the editorial boards that they appoint, or the people who sift through the vast numbers of papers submitted to a handful of ‘top’ journals are endowed with sufficient insight to set the trends of future science. It seems even less obvious that funding agencies should blindly follow the fashion trends set by the publishers. The perverse relationships between private publishers and public funding agencies may have a toxic effect on science policy.  相似文献   

17.
The impact of new technologies on human population studies   总被引:4,自引:0,他引:4  
Human population studies involve clinical or epidemiological observations that associate environmental exposures with health endpoints and disease. Clearly, these are the most sought after data to support assessments of human health risk from environmental exposures. However, the foundations of many health risk assessments rest on experimental studies in rodents performed at high doses that elicit adverse outcomes, such as organ toxicity or tumors. Using the results of human studies and animal data, risk assessors define the levels of environmental exposures that may lead to disease in a portion of the population. These decisions on potential health risks are frequently based on the use of default assumptions that reflect limitations in our scientific knowledge. An important immediate goal of toxicogenomics, including proteomics and metabonomics, is to offer the possibility of making decisions affecting public health and public based on detailed toxicity, mechanistic, and exposure data in which many of the uncertainties have been eliminated. Ultimately, these global technologies will dramatically impact the practice of public health and risk assessment as applied to environmental health protection. The impact is already being felt in the practice of toxicology where animal experimentation using highly controlled dose-time parameters is possible. It is also being seen in human population studies where understanding human genetic variation and genomic reactions to specific environmental exposures is enhancing our ability to uncover the causes of variations in human response to environmental exposures. These new disciplines hold the promise of reducing the costs and time lines associated with animal and human studies designed to assess both the toxicity of environmental pollutants and efficacy of therapeutic drugs. However, as with any new science, experience must be gained before the promise can be fulfilled. Given the numbers and diversity of drugs, chemicals and environmental agents; the various species in which they are studied and the time and dose factors that are critical to the induction of beneficial and adverse effects, it is only through the development of a profound knowledge base that toxicology and environmental health can rapidly advance. The National Institute of Environmental Health Sciences (NIEHS), National Center for Toxicogenomics and its university-based Toxicogenomics Research Consortium (TRC), and resource contracts, are engaged in the development, application and standardization of the science upon which to the build such a knowledge base on Chemical Effects in Biological Systems (CEBS). In addition, the NIEHS Environmental Genome Project (EGP) is working to systematically identify and characterize common sequence polymorphisms in many genes with suspected roles in determining chemical sensitivity. The rationale of the EGP is that certain genes have a greater than average influence over human susceptibility to environmental agents. If we identify and characterize the polymorphism in those genes, we will increase our understanding of human disease susceptibility. This knowledge can be used to protect susceptible individuals from disease and to reduce adverse exposure and environmentally induced disease.  相似文献   

18.
Vaccinomics is the convergence of vaccinology and population-based omics sciences. The success of knowledge-based innovations such as vaccinomics is not only contingent on access to new biotechnologies. It also requires new ways of governance of science, knowledge production, and management. This article presents a conceptual analysis of the anticipatory and adaptive approaches that are crucial for the responsible design and sustainable transition of vaccinomics to public health practice. Anticipatory governance is a new approach to manage the uncertainties embedded on an innovation trajectory with participatory foresight, in order to devise governance instruments for collective "steering" of science and technology. As a contrast to hitherto narrowly framed "downstream impact assessments" for emerging technologies, anticipatory governance adopts a broader and interventionist approach that recognizes the social construction of technology design and innovation. It includes in its process explicit mechanisms to understand the factors upstream to the innovation trajectory such as deliberation and cocultivation of the aims, motives, funding, design, and direction of science and technology, both by experts and publics. This upstream shift from a consumer "product uptake" focus to "participatory technology design" on the innovation trajectory is an appropriately radical and necessary departure in the field of technology assessment, especially given that considerable public funds are dedicated to innovations. Recent examples of demands by research funding agencies to anticipate the broad impacts of proposed research--at a very upstream stage at the time of research funding application--suggest that anticipatory governance with foresight may be one way how postgenomics scientific practice might transform in the future toward responsible innovation. Moreover, the present context of knowledge production in vaccinomics is such that policy making for vaccines of the 21st century is occurring in the face of uncertainties where the "facts are uncertain, values in dispute, stakes high and decisions urgent and where no single one of these dimensions can be managed in isolation from the rest." This article concludes, however, that uncertainty is not an accident of the scientific method, but its very substance. Anticipatory governance with participatory foresight offers a mechanism to respond to such inherent sociotechnical uncertainties in the emerging field of vaccinomics by making the coproduction of scientific knowledge by technology and the social systems explicit. Ultimately, this serves to integrate scientific and social knowledge thereby steering innovations to coproduce results and outputs that are socially robust and context sensitive.  相似文献   

19.
Scientific research is of proven value to protecting public health and the environment from current and future problems. We explore the extent to which the Precautionary Principle is a threat to this rôle for science and technology. Not surprisingly for a relatively simple yet still incompletely defined concept, supporters of the Precautionary Principle come from different viewpoints, including a viewpoint that is at least uneasy with the rôle of science, and particularly its use in risk assessment. There are also aspects of the Precautionary Principle that inherently restrict obtaining and using science. The Hazardous Air Pollutant (HAP) provisions in the US Clean Air Act Amendments are an example of the Precautionary Principle, which both shifted the burden of proof so that the onus is now on showing a listed compound is harmless, and required maximum available control technology (MACT) instead of a primarily risk-based approach to pollution control. Since its passage in 1990 there has been a decrease in research funding for studies of HAPs. Other potential problems include that once MACT regulations are established, it may be difficult to develop new technological approaches that will further improve air pollution control; that by treating all regulated HAPs similarly, no distinction is made between those that provide a higher or lower risk; and that there is a perverse incentive to use less well studied agents that are not on the existing list. As acting on the Precautionary Principle inherently imposes significant costs for what is a potentially erroneous action, additional scientific study should be required to determine if the precautionary action was successful. If we are to maximize the value of the Precautionary Principle to public health and the environment, it is crucial that its impact not adversely affect the potent preventive rôle of science and technology.  相似文献   

20.
Rehabilitation of stranded marine mammals elicits polarized attitudes: initially done alongside display collections, but release of rehabilitated animals has become more common. Justifications include animal welfare, management of beach use conflict, research, conservation, and public education. Rehabilitation cost and risks have been identified that vary in degree supported by data rather than perception. These include conflict with fisheries for resources, ignorance of recipient population ecology, poor understanding of long-term survival, support of the genetically not-so-fit, introduction of novel or antibiotic-resistant pathogens, harm to human health, and cost. Thus facilities must balance their welfare appeal against public education, habitat restoration, human impact reduction, and other conservation activities. Benefits to rehabilitating marine mammals are the opportunity to support the welfare of disabled animals and to publish good science and so advance our understanding of wild populations. In specific cases, the status of a population may make conservation the main reason for rehabilitation. These three reasons for rehabilitation lead to contrasting, and sometimes conflicting, management needs. We therefore outline a decision tree for rehabilitation managers using criteria for each management decision, based on welfare, logistics, conservation, research, and funding to define limits on the number of animals released to the wild.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号