首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoplasmic membrane protein TonB couples the protonmotive force of the cytoplasmic membrane to active transport across the outer membrane of Escherichia coli. The uncleaved amino-terminal signal anchor transmembrane domain (TMD; residues 12 to 32) of TonB and the integral cytoplasmic membrane proteins ExbB and ExbD are essential to this process, with important interactions occurring among the several TMDs of all three proteins. Here, we show that, of all the residues in the TonB TMD, only His(20) is essential for TonB activity. When alanyl residues replaced all TMD residues except Ser(16) and His(20), the resultant "all-Ala Ser(16) His(20)" TMD TonB retained 90% of wild-type iron transport activity. Ser(16)Ala in the context of a wild-type TonB TMD was fully active. In contrast, His(20)Ala in the wild-type TMD was entirely inactive. In more mechanistically informative assays, the all-Ala Ser(16) His(20) TMD TonB unexpectedly failed to support formation of disulfide-linked dimers by TonB derivatives bearing Cys substitutions for the aromatic residues in the carboxy terminus. We hypothesize that, because ExbB/D apparently cannot efficiently down-regulate conformational changes at the TonB carboxy terminus through the all-Ala Ser(16) His(20) TMD, the TonB carboxy terminus might fold so rapidly that disulfide-linked dimers cannot be efficiently trapped. In formaldehyde cross-linking experiments, the all-Ala Ser(16) His(20) TMD also supported large numbers of apparently nonspecific contacts with unknown proteins. The all-Ala Ser(16) His(20) TMD TonB retained its dependence on ExbB/D. Together, these results suggest that a role for ExbB/D might be to control rapid and nonspecific folding that the unregulated TonB carboxy terminus otherwise undergoes. Such a model helps to reconcile the crystal/nuclear magnetic resonance structures of the TonB carboxy terminus with conformational changes and mutant phenotypes observed at the TonB carboxy terminus in vivo.  相似文献   

2.
While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion.  相似文献   

3.
Barman S  Nayak DP 《Journal of virology》2000,74(14):6538-6545
Influenza virus neuraminidase (NA), a type II transmembrane protein, is directly transported to the apical plasma membrane in polarized MDCK cells. Previously, it was shown that the transmembrane domain (TMD) of NA provides a determinant(s) for apical sorting and raft association (A. Kundu, R. T. Avalos, C. M. Sanderson, and D. P. Nayak, J. Virol. 70:6508-6515, 1996). In this report, we have analyzed the sequences in the NA TMD involved in apical transport and raft association by making chimeric TMDs from NA and human transferring receptor (TR) TMDs and by mutating the NA TMD sequences. Our results show that the COOH-terminal half of the NA TMD (amino acids [aa] 19 to 35) was significantly involved in raft association, as determined by Triton X-100 (TX-100) resistance. However, in addition, the highly conserved residues at the extreme NH(2) terminus of the NA TMD were also critical for TX-100 resistance. On the other hand, 19 residues (aa 9 to 27) at the NH(2) terminus of the NA TMD were sufficient for apical sorting. Amino acid residues 14 to 18 and 27 to 31 had the least effect on apical transport, whereas mutations in the amino acid residues 11 to 13, 23 to 26, and 32 to 35 resulted in altered polarity for the mutant proteins. These results indicated that multiple regions in the NA TMD were involved in apical transport. Furthermore, these results support the idea that the signals for apical sorting and raft association, although residing in the NA TMD, are not identical and vary independently and that the NA TMD also possesses an apical determinant(s) which can interact with apical sorting machineries outside the lipid raft.  相似文献   

4.
Select members of the Reoviridae are the only nonenveloped viruses known to induce syncytium formation. The fusogenic orthoreoviruses accomplish cell-cell fusion through a distinct class of membrane fusion-inducing proteins referred to as the fusion-associated small transmembrane (FAST) proteins. The p15 membrane fusion protein of baboon reovirus is unique among the FAST proteins in that it contains two hydrophobic regions (H1 and H2) recognized as potential transmembrane (TM) domains, suggesting a polytopic topology. However, detailed topological analysis of p15 indicated only the H1 domain is membrane spanning. In the absence of an N-terminal signal peptide, the H1 TM domain serves as a reverse signal-anchor to direct p15 membrane insertion and a bitopic N(exoplasmic)/C(cytoplasmic) topology. This topology results in the translocation of the smallest ectodomain ( approximately 20 residues) of any known viral fusion protein, with the majority of p15 positioned on the cytosolic side of the membrane. Mutagenic analysis indicated the unusual presence of an N-terminal myristic acid on the small p15 ectodomain is essential to the fusion process. Furthermore, the only other hydrophobic region (H2) present in p15, aside from the TM domain, is located within the endodomain. Consequently, the p15 ectodomain is devoid of a fusion peptide motif, a hallmark feature of membrane fusion proteins. The exceedingly small, myristoylated ectodomain and the unusual topological distribution of structural motifs in this nonenveloped virus membrane fusion protein necessitate alternate models of protein-mediated membrane fusion.  相似文献   

5.
Pmp47 is a peroxisomal membrane protein consisting of six transmembrane domains (TMDs). We previously showed that the second matrix loop containing a basic cluster of amino acids is important for peroxisomal targeting, and similar basic targeting motifs have been found in other peroxisomal membrane proteins. However, this basic cluster by itself targets to peroxisomes very poorly. We have developed a sensitive quantitative localization assay based on the targeting of Pmp47-GFP fusion proteins to identify the important elements of the basic cluster and to search for other targeting information on Pmp47. Our data suggest that side-chain structure and position as well as charge are important for targeting by the basic cluster. Analysis of other regions of Pmp47 indicates that all TMDs except TMD2 can be eliminated or substituted without significant loss of targeting. TMD2 plus an adjacent cytoplasmic-oriented sequence is crucial for targeting. Cytoplasmic-oriented sequences from two other peroxisomal membrane proteins, ScPex15p and ScPmp22, could partially substitute for the analogous sequence in Pmp47. Targeting with high fidelity to oleate-induced peroxisomes required the following elements: the cytoplasmic-oriented sequence and TMD2, a short matrix loop containing a basic cluster, and a membrane-anchoring TMD.  相似文献   

6.
Kobus FJ  Fleming KG 《Biochemistry》2005,44(5):1464-1470
The recently cloned colon carcinoma kinase 4 (CCK4) oncogene contains an evolutionarily conserved GxxxG motif in its single transmembrane domain (TMD). It has previously been suggested that this pairwise glycine motif may provide a strong driving force for transmembrane helix-helix interactions. Since CCK4 is thought to represent a new member of the receptor tyrosine kinase family, interactions between the TMDs may be important in receptor self-association and activation of signal transduction pathways. To determine whether this conserved CCK4 TMD can drive protein-protein interactions, we have carried out a thermodynamic study using the TMD expressed as a Staphylococcal nuclease (SN) fusion protein. Similar SN-TMD fusion proteins have been used to determine the sequence specificity and thermodynamics of transmembrane helix-helix interactions in a number of membrane proteins, including glycophorin A. Using sedimentation equilibrium in C14 betaine micelles, we discovered that the CCK4 TMD is unable to drive strong protein-protein interactions. At high protein/detergent ratios, the SN-CCK4 fusion protein will dimerize, but a stochastic model for protein association in micelles can explain the observed dimer population. For low-affinity interactions such as the one studied here, an understanding of this discrete stochastic distribution of membrane proteins in micelles is important for distinguishing between preferential and random self-interactions, which can both influence the oligomeric population. The lack of a thermodynamically meaningful self-association propensity for the CCK4 TMDs demonstrates that a GxxxG motif is not sufficient to drive transmembrane helix-helix interactions.  相似文献   

7.
Neumann S  Langosch D 《Proteins》2011,79(8):2418-2427
SNARE proteins and fusogenic viral membrane proteins represent the major classes of integral membrane proteins that mediate fusion of eukaryotic lipid bilayers. Although both classes have different primary structures, they share a number of basic architectural features. There is ample evidence that the fusogenic function of representative fusion proteins is influenced by the primary structure of the single transmembrane domain (TMD) and the region linking it to the soluble assembly domains. Here, we used comprehensive non-redundant datasets to examine potential over- and underrepresentation of amino acid types in the TMDs and flanking regions relative to control proteins that share similar biosynthetic origins. Our results reveal conserved overall and/or site-specific enrichment of β-branched residues and Gly within the TMDs, underrepresentation of Gly and Pro in regions flanking the TMD N-terminus, and overrepresentation of the same residue types in C-terminal flanks of SNAREs and viral fusion proteins. Furthermore, the basic Lys and Arg are enriched within SNARE N-terminal flanking regions. These results suggest evolutionary conservation of key structural features of fusion proteins and are discussed in light of experimental findings that link these features to the fusogenic function of these proteins.  相似文献   

8.
alpha 1,3 mannosyltransferase (Mnn1p) is a type II integral membrane protein that is localized to the yeast Golgi complex. We have examined the signals within Mnn1p that mediate Golgi localization by expression of fusion proteins comprised of Mnn1p and the secreted protein invertase. The N-terminal transmembrane domain (TMD) of Mnn1p is sufficient to localize invertase to the Golgi complex by a mechanism that is not saturable by approximately 15-20 fold overexpression. Furthermore, the TMD-mediated localization mechanism is clathrin dependent, as an invertase fusion protein bearing only the Mnn1p TMD is mislocalized to the plasma membrane of a clathrin heavy chain mutant. The Mnn1-invertase fusion proteins are not retained in the Golgi complex as efficiently as Mnn1p, suggesting that other signals may be present in the wild-type protein. Indeed, the Mnn1p lumenal domain (Mnn1-s) is also localized to the Golgi complex when expressed as a functional, soluble protein by exchanging its TMD for a cleavable signal sequence. In contrast to the Mnn1-invertase fusion proteins, overexpression of Mnn1-s saturates its retention mechanism, and results in the partial secretion of this protein. These data indicate that Mnn1p has separable Golgi localization signals within both its transmembrane and lumenal domains.  相似文献   

9.
Previous experiments on the cystic fibrosis transmembrane conductance regulator suggested that non-native polar residues within membrane domains can compromise protein structure/function. However, depending on context, replacement of a native residue by a non-native residue can result either in genetic disease or in benign effects (e.g., polymorphisms). Knowledge of missense mutations that frequently cause protein malfunction and subsequent disease can accordingly reveal information as to the impact of these residues in local protein environments. We exploited this concept by performing a statistical comparison of disease-causing mutations in protein membrane-spanning domains versus soluble domains. Using the Human Gene Mutation Database of 240 proteins (including 80 membrane proteins) associated with human disease, we compared the relative phenotypic propensity to cause disease of the 20 naturally occurring amino acids when removed from-or inserted into-native protein sequences. We found that in transmembrane domains (TMDs), mutations involving polar residues, and ionizable residues in particular (notably arginine), are more often associated with protein malfunction than soluble proteins. To further test the hypothesis that interhelical cross-links formed by membrane-embedded polar residues stabilize TMDs, we compared the occurrence of such residues in the TMDs of mesophilic and thermophilic prokaryotes. Results showed a significantly higher proportion of ionizable residues in thermophilic organisms, reinforcing the notion that membrane-embedded electrostatic interactions play critical roles in TMD stability.  相似文献   

10.
The TonB system couples cytoplasmic membrane proton motive force (pmf) to active transport of diverse nutrients across the outer membrane. Current data suggest that cytoplasmic membrane proteins ExbB and ExbD harness pmf energy. Transmembrane domain (TMD) interactions between TonB and ExbD allow the ExbD C terminus to modulate conformational rearrangements of the periplasmic TonB C terminus in vivo. These conformational changes somehow allow energization of high-affinity TonB-gated transporters by direct interaction with TonB. While ExbB is essential for energy transduction, its role is not well understood. ExbB has N-terminus-out, C-terminus-in topology with three TMDs. TMDs 1 and 2 are punctuated by a cytoplasmic loop, with the C-terminal tail also occupying the cytoplasm. We tested the hypothesis that ExbB TMD residues play roles in proton translocation. Reassessment of TMD boundaries based on hydrophobic character and residue conservation among distantly related ExbB proteins brought earlier widely divergent predictions into congruence. All TMD residues with potentially function-specific side chains (Lys, Cys, Ser, Thr, Tyr, Glu, and Asn) and residues with probable structure-specific side chains (Trp, Gly, and Pro) were substituted with Ala and evaluated in multiple assays. While all three TMDs were essential, they had different roles: TMD1 was a region through which ExbB interacted with the TonB TMD. TMD2 and TMD3, the most conserved among the ExbB/TolQ/MotA/PomA family, played roles in signal transduction between cytoplasm and periplasm and the transition from ExbB homodimers to homotetramers. Consideration of combined data excludes ExbB TMD residues from direct participation in a proton pathway.  相似文献   

11.
The yeast Golgi membrane protein Rer1p is required for the retrieval of various endoplasmic reticulum (ER) membrane proteins such as Sec12p and Sec71p to the ER. We demonstrate here that the transmembrane domain (TMD) of Sec71p, a type-III membrane protein, contains an ER localization signal, which is required for physical recognition by Rer1p. The Sec71TMD-GFP fusion protein is efficiently retrieved to the ER by Rer1p. The structural feature of this TMD signal turns out to be the spatial location of polar residues flanking the highly hydrophobic core sequence but not the whole length of the TMD. On the Rer1p side, Tyr152 residue in the 4th TMD is important for the recognition of Sec12p but not Sec71p, suggesting that Rer1p interacts with its ligands at least in two modes. Sec71TMD-GFP expressed in the Deltarer1 mutant cells is mislocalized from the ER to the lumen of vacuoles via the multivesicular body (MVB) sorting pathway. In this case, not only the presence of polar residues in the Sec71TMD but also the length of the TMD is critical for the MVB sorting. Thus, the Rer1p-dependent ER retrieval and the MVB sorting in late endosomes both watch polar residues in the TMD but in a different manner.  相似文献   

12.
Type I interferons serve as the first line of defense against pathogen invasion. Binding of IFNs to its receptors, IFNAR1 and IFNAR2, is leading to activation of the IFN response. To determine whether structural perturbations observed during binding are propagated to the cytoplasmic domain, multiple mutations were introduced into the transmembrane helix and its surroundings. Insertion of one to five alanine residues near either the N or C terminus of the transmembrane domain (TMD) likely promotes a rotation of 100° and a translation of 1.5 Å per added residue. Surprisingly, the added alanines had little effect on the binding affinity of IFN to the cell surface receptors, STAT phosphorylation, or gene induction. Similarly, substitution of the juxtamembrane residues of the TMD with alanines, or replacement of the TMD of IFNAR1 with that of IFNAR2, did not affect IFN binding or activity. Finally, only the addition of 10 serine residues (but not 2 or 4) between the extracellular domain of IFNAR1 and the TMD had some effect on signaling. Bioinformatic analysis shows a correlation between high sequence conservation of TMDs of cytokine receptors and the ability to transmit structural signals. Sequence conservation near the TMD of IFNAR1 is low, suggesting limited functional importance for this region. Our results suggest that IFN binding to the extracellular domains of IFNAR1 and IFNAR2 promotes proximity between the intracellular domains and that differential signaling is a function of duration of activation and affinity of binding rather than specific conformational changes transmitted from the outside to the inside of the cell.  相似文献   

13.
Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.  相似文献   

14.
The reovirus fusion-associated small transmembrane (FAST) proteins are virus-encoded membrane fusion proteins that function as dedicated cell–cell fusogens. The topology of these small, single-pass membrane proteins orients the majority of the protein on the distal side of the membrane (i.e., inside the cell). We now show that ectopic expression of the endodomains of the p10, p14, and p15 FAST proteins enhances syncytiogenesis induced by the full-length FAST proteins, both homotypically and heterotypically. Results further indicate that the 68-residue cytoplasmic endodomain of the p14 FAST protein (1) is endogenously generated from full-length p14 protein expressed in virus-infected or transfected cells; (2) enhances syncytiogenesis subsequent to stable pore formation; (3) increases the syncytiogenic activity of heterologous fusion proteins, including the differentiation-dependent fusion of murine myoblasts; (4) exerts its enhancing activity from the cytosol, independent of direct interactions with either the fusogen or the membranes being fused; and (5) contains several regions with protein–protein interaction motifs that influence enhancing activity. We propose that the unique evolution of the FAST proteins as virus-encoded cellular fusogens has allowed them to generate a trans-acting, soluble endodomain peptide to harness a cellular pathway or process involved in the poorly understood process that facilitates the transition from microfusion pores to macrofusion and syncytiogenesis.  相似文献   

15.
The non-enveloped fusogenic avian and Nelson Bay reoviruses encode homologous 10 kDa non-structural transmembrane proteins. The p10 proteins localize to the cell surface of transfected cells in a type I orientation and induce efficient cell-cell fusion. Mutagenic studies revealed the importance of conserved sequence-predicted structural motifs in the membrane association and fusogenic properties of p10. These motifs included a centrally located transmembrane domain, a conserved cytoplasmic basic region, a small hydrophobic motif in the N-terminal domain and four conserved cysteine residues. Functional analysis indicated that the extreme C-terminus of p10 functions in a sequence-independent manner to effect p10 membrane localization, while the N-terminal domain displays a sequence-dependent effect on the fusogenic property of p10. The small size, unusual arrangement of structural motifs and lack of any homologues in previously described membrane fusion proteins suggest that the fusion-associated small transmembrane (FAST) proteins of reovirus represent a new class of membrane fusion proteins.  相似文献   

16.
S Munro 《The EMBO journal》1995,14(19):4695-4704
The single transmembrane domains (TMDs) of the resident glycosylation enzymes of the Golgi apparatus are involved in preventing these proteins moving beyond the Golgi. It has been proposed that either the TMDs associate, resulting in the formation of large oligomers of Golgi enzymes, or that they mediate the lateral segregation of the enzymes between lipid microdomains. Evidence for either type of interaction has been sought by examining the retention of sialyltransferase (ST), an enzyme of the mammalian trans Golgi. No evidence could be obtained for specific interactions or 'kin recognition' between ST and other proteins of the trans Golgi. Moreover, it is shown that the previously described kin recognition between enzymes of the medial Golgi involves the lumenal portions of these proteins rather than their TMDs. To investigate further the role of the ST TMD, the effects on Golgi retention of various alterations in the TMD were examined. The addition or removal of residues showed that the efficiency of retention of ST is related to TMD length. Moreover, when a type I plasma membrane protein was expressed with a synthetic TMD of 23 leucines it appeared on the cell surface, but when the TMD was shortened to 17 leucines accumulation in the Golgi was observed. These observations are more consistent with lipid-based sorting of ST TMD, but they also allow for reconciliation with the kin recognition model which appears to act on sequences outside of the TMD.  相似文献   

17.
Biological membrane fusion is dependent on protein catalysts to mediate localized restructuring of lipid bilayers. A central theme in current models of protein-mediated membrane fusion involves the sequential refolding of complex homomeric or heteromeric protein fusion machines. The structural features of a new family of fusion-associated small transmembrane (FAST) proteins appear incompatible with existing models of membrane fusion protein function. While the FAST proteins function to induce efficient cell-cell fusion when expressed in transfected cells, it was unclear whether they function on their own to mediate membrane fusion or are dependent on cellular protein cofactors. Using proteoliposomes containing the purified p14 FAST protein of reptilian reovirus, we now show via liposome-cell and liposome-liposome fusion assays that p14 is both necessary and sufficient for membrane fusion. Stoichiometric and kinetic analyses suggest that the relative efficiency of p14-mediated membrane fusion rivals that of the more complex cellular and viral fusion proteins, making the FAST proteins the simplest known membrane fusion machines.  相似文献   

18.
For most membrane proteins, the transmembrane domain (TMD) is more than just an anchor to the membrane. The TMDs of hepatitis C virus (HCV) envelope proteins E1 and E2 are extreme examples of the multifunctionality of such membrane-spanning sequences. Indeed, they possess a signal sequence function in their C-terminal half, play a major role in endoplasmic reticulum localization of E1 and E2, and are potentially involved in the assembly of these envelope proteins. These multiple functions are supposed to be essential for the formation of the viral envelope. As for the other viruses of the family Flaviviridae, these anchor domains are composed of two stretches of hydrophobic residues separated by a short segment containing at least one fully conserved charged residue. Replacement of these charged residues by an alanine in HCV envelope proteins led to an alteration of all of the functions performed by their TMDs, indicating that these functions are tightly linked together. These data suggest that the charged residues of the TMDs of HCV glycoproteins play a key role in the formation of the viral envelope.  相似文献   

19.
Chin CN  Sachs JN  Engelman DM 《FEBS letters》2005,579(17):3855-3858
Receptor-like protein tyrosine phosphatases (RPTPs) are type I integral membrane proteins. Together with protein tyrosine kinases, RPTPs regulate the phosphotyrosine levels in the cell. Studies of two RPTPs, CD45 and PTPalpha, have provided strong evidence that dimerization leads to inactivation of the receptors, and that the dimerization of PTPalpha involves interactions in the transmembrane domain (TMD). Using the TOXCAT assay, a genetic approach for analyzing TM interactions in Escherichia coli membranes, we show that the TMD of RPTPs interact in the membrane, albeit to different extents. Using fusion proteins of TMDs, we also observe an equilibrium between monomer and dimer in sodium dodecyl sulfate (SDS) micelles. Through a mutational study of the DEP1 TMD, we demonstrate that these interactions are specific. Taken together, our results define a subset of the RPTP family in which TM homodimerization may act as a mediator of protein function.  相似文献   

20.
Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号