首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study evaluated and compared the occurrence, concentrations, and genetic diversity of bovine polyomavirus (BPyV) and bovine adenovirus (BAdV) in manure and feces samples for the purpose of determining which of these two viruses is more suitable for bovine fecal indication and microbial source tracking. The comparability and correlation between concentrations/prevalence of these viruses and bacterial fecal indicators (cow-associated Bacteroidetes, Escherichia coli and enterococci) in manure and fecal samples was also determined. A total of 26 dairy manure and 18 individual dairy cow feces samples were tested. The results showed the mean concentration of BAdV in all of dairy manure samples was at least 1 log lower than BPyV (p ≤ 0.005). All of the dairy manure samples tested positive for BPyV but not for BAdV. After combining dairy manure measurements, bacterial indicators had 0.3–0.7 log (p ≤ 0.05) and 1.8–2.2 log (p ≤ 0.005) higher concentrations than BPyV and BAdV, respectively. The concentration of BPyV had a significant positive correlation with the concentration of E. coli and enterococci in the manure samples. The partial VP1 genetic sequences of BPyV isolated from three different farms had a 100% homology to each other and to VP1 sequence (D13942.1) reported in previous study. Based on the occurrence, quantitative and genetic diversity results, BPyV may be a better indicator than BAdV for microbial source tracking at manure application sites.  相似文献   

2.
Several microbes and chemicals have been considered as potential tracers to identify fecal sources in the environment. However, to date, no one approach has been shown to accurately identify the origins of fecal pollution in aquatic environments. In this multilaboratory study, different microbial and chemical indicators were analyzed in order to distinguish human fecal sources from nonhuman fecal sources using wastewaters and slurries from diverse geographical areas within Europe. Twenty-six parameters, which were later combined to form derived variables for statistical analyses, were obtained by performing methods that were achievable in all the participant laboratories: enumeration of fecal coliform bacteria, enterococci, clostridia, somatic coliphages, F-specific RNA phages, bacteriophages infecting Bacteroides fragilis RYC2056 and Bacteroides thetaiotaomicron GA17, and total and sorbitol-fermenting bifidobacteria; genotyping of F-specific RNA phages; biochemical phenotyping of fecal coliform bacteria and enterococci using miniaturized tests; specific detection of Bifidobacterium adolescentis and Bifidobacterium dentium; and measurement of four fecal sterols. A number of potentially useful source indicators were detected (bacteriophages infecting B. thetaiotaomicron, certain genotypes of F-specific bacteriophages, sorbitol-fermenting bifidobacteria, 24-ethylcoprostanol, and epycoprostanol), although no one source identifier alone provided 100% correct classification of the fecal source. Subsequently, 38 variables (both single and derived) were defined from the measured microbial and chemical parameters in order to find the best subset of variables to develop predictive models using the lowest possible number of measured parameters. To this end, several statistical or machine learning methods were evaluated and provided two successful predictive models based on just two variables, giving 100% correct classification: the ratio of the densities of somatic coliphages and phages infecting Bacteroides thetaiotaomicron to the density of somatic coliphages and the ratio of the densities of fecal coliform bacteria and phages infecting Bacteroides thetaiotaomicron to the density of fecal coliform bacteria. Other models with high rates of correct classification were developed, but in these cases, higher numbers of variables were required.  相似文献   

3.
Microbial compositions of human and animal feces from South Korea were analyzed and characterized. In total, 38 fecal samples (14 healthy adult humans, 6 chickens, 6 cows, 6 pigs and 6 geese) were analyzed by 454 pyrosequencing of the V2 region of the 16S rRNA gene. Four major phyla, Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were identified in the samples. Principal coordinate analysis suggested that microbiota from the same host species generally clustered, with the exception of those from humans, which exhibited sample-specific compositions. A network-based analysis revealed that several operational taxonomic units (OTUs), such as Lactobacillus sp., Clostridium sp. and Prevotella sp., were commonly identified in all fecal sources. Other OTUs were present only in fecal samples from a single organism. For example, Yania sp. and Bifidobacterium sp. were identified specifically in chicken and human fecal samples, respectively. These specific OTUs or their respective biological markers could be useful for identifying the sources of fecal contamination in water by microbial source tracking.  相似文献   

4.
5.
Aim To examine the distribution and structure of genetic variation among native Spartina alterniflora and to characterize the evolutionary mechanisms underlying the success of non‐native S. alterniflora. Location Intertidal marshes along the Atlantic, Gulf and Pacific coasts of North America. Methods amova , parsimony analysis, haplotype networks of chloroplast DNA (cpDNA) sequences, neighbour‐joining analysis, Bayesian analysis of population structure, and individual assignment testing were used. Results Low levels of gene flow and geographic patterns of genetic variation were found among native S. alterniflora from the Atlantic and Gulf coasts of North America. The distribution of cpDNA haplotypes indicates that Atlantic coast S. alterniflora are subdivided into ‘northern’ and ‘southern’ groups. Variation observed at microsatellite loci further suggests that mid‐Atlantic S. alterniflora are differentiated from S. alterniflora found in southern Atlantic and New England coastal marshes. Comparisons between native populations on the Atlantic and Gulf coasts and non‐native Pacific coast populations substantiate prior studies demonstrating reciprocal interspecific hybridization in San Francisco Bay. Our results corroborate historical evidence that S. alterniflora was introduced into Willapa Bay from multiple source populations. However, we found that some Willapa Bay S. alterniflora are genetically divergent from putative sources, probably as a result of admixture following secondary contact among previously allopatric native populations. We further recovered evidence in support of models suggesting that S. alterniflora has secondarily spread within Washington State, from Willapa Bay to Grays Harbor. Main conclusions Underlying genetic structure has often been cited as a factor contributing to ecological variation of native S. alterniflora. Patterns of genetic structure within native S. alterniflora may be the result of environmental differences among biogeographical provinces, of migration barriers, or of responses to historical conditions. Interactions among these factors, rather than one single factor, may best explain the distribution of genetic variation among native S. alterniflora. Comprehensive genetic comparisons of native and introduced populations can illustrate how biological invasions may result from dramatically different underlying factors – some of which might otherwise go unrecognized. Demonstrating that invasions can result from several independent or interacting mechanisms is important for improving risk assessment and future forecasting. Further research on S. alterniflora not only may clarify what forces structure native populations, but also may improve the management of non‐native populations by enabling post‐introduction genetic changes and the rapid evolution of life‐history traits to be more successfully exploited.  相似文献   

6.
分子标记物在禽类粪便污染溯源中的研究及应用进展   总被引:1,自引:0,他引:1  
排入环境后的禽类粪便不仅会造成水体和土壤环境污染,且其携带的致病菌对人类健康也存在潜在危害,因此快速准确地识别并控制粪便污染源对环境保护和人类健康至关重要。微生物溯源(Microbial source tracking,MST)技术可以利用分子标记物识别人和不同动物的粪便污染,从而有助于及时发现并控制粪便污染。鉴于禽类粪便对环境和人类健康的危害,越来越多的禽类MST标记物被开发并用于禽类的粪便污染溯源研究。归纳总结了多种禽类(如鸡、鸭、鸽子、海鸥、加拿大雁和沙丘鹤等) MST分子标记物及其敏感性和特异性,重点综述了禽类分子标记物的基因来源,包括细菌16S rRNA基因、线粒体DNA和功能基因等。其中,细菌16S rRNA基因在标记物设计中的应用最为广泛,源指示菌主要包括厚壁菌门(Firmicutes)、拟杆菌目(Bacteroidales)、放线菌门(Actinobacteria)、变形菌门(Proteobacteria)和梭杆菌门(Fusobacteria)及其家族成员;以cytb基因、ND5基因、16S rRNA基因和ND2基因等线粒体DNA (Mitochondrial DNA,mtDNA)为设计来源的禽类MST标记物在溯源研究中指示效果最好,具有很大的应用潜能;使用功能基因作为设计来源的禽类MST标记物种类较少,且均表现出较低的敏感性,但是将功能基因作为MST标记物的思路具有一定的参考价值。通过对多种禽类标记物指示效果的比较,能为科研人员快速选择禽类标记物时提供一定的参考。此外,还对禽类MST技术的现存问题进行了分析总结,并对其在我国的发展进行了展望,以期促进MST技术在我国环境质量监测领域中的发展和应用。  相似文献   

7.
[目的] 解析郫县豆瓣及其酿造半成品-蚕豆醅与辣椒醅微生物多样性和来源,探究郫县豆瓣酿造过程风味化合物特征。[方法] 采用高通量测序法测定蚕豆醅、辣椒醅与混合醅(蚕豆醅-辣椒醅混合物,发酵成熟形成郫县豆瓣)在酿造过程中的微生物群落结构;利用高效气相质谱与高效液相色谱高通量检测蚕豆醅及辣椒醅中基础理化指标及挥发性、非挥发性风味化合物浓度;利用多种生物信息学分析方法对混合醅酿造微生物及风味化合物进行溯源。[结果] 微生物方面:44%–59%的混合醅细菌来源于辣椒醅,5%–22%的混合醅细菌来源于蚕豆醅,其他混合醅细菌来源未知。同时,42%–77%的混合醅真菌来源于辣椒醅,2%–18%的混合醅真菌来源于蚕豆醅,其他混合醅真菌来源未知。另外,16个细菌属由辣椒醅特异性贡献;2个细菌属及2个真菌属由蚕豆醅特异性贡献。化合物方面:1-辛烯-3醇(1-octen-3-ol)、苯乙醛(phenylacetaldehyde)、异丁醛(isobutyraldehyde)、苹果酸(malic acid)与糠醛(furfural)仅由蚕豆醅贡献。辣椒素(capsaicin)、3-甲基-1-丁醇(3-methyl-1-butanol)、已醇(hexanol)与异丁醇(isobutanol)仅由辣椒醅贡献。[结论] 郫县豆瓣发酵中大部分微生物来源于辣椒醅,大部分发酵底物(氨基酸及葡萄糖)来源于蚕豆醅。两种发酵半成品均特异性贡献微生物及风味化合物,形成郫县豆瓣的独特风味密码。  相似文献   

8.
This study tested genetic microbial source tracking (MST) methods for identifying ruminant- (BacR) and human-associated (HF183/BacR287, BacHum) bacterial faecal contaminants in Ethiopia in a newly created regional faecal sample bank (n = 173). BacR performed well, and its marker abundance was high (100% sensitivity (Sens), 95% specificity (Spec), median log10 8·1 marker equivalents (ME) g−1 ruminant faeces). Human-associated markers tested were less abundant in individual human samples (median: log10 5·4 and 4·2 (ME + 1) g−1) and were not continuously detected (81% Sens, 91% Spec for BacHum; 77% Sens, 91% Spec for HF183/BacR287). Furthermore, the pig-associated Pig2Bac assay was included and performed excellent (100% Sens, 100% Spec). To evaluate the presence of MST targets in the soil microbiome, representative soil samples were tested during a whole seasonal cycle (n = 60). Only BacR could be detected, but was limited to the dry season and to sites of higher anthropogenic influence (log10 3·0 to 4·9 (ME + 1) g−1 soil). In conclusion, the large differences in marker abundances between target and non-target faecal samples (median distances between distributions ≥log10 3 to ≥log10 7) and their absence in pristine soil indicate that all tested assays are suitable candidates for diverse MST applications in the Ethiopian area.  相似文献   

9.
Microbialites (stromatolites and thrombolites) are mineralized mat structures formed via the complex interactions of diverse microbial‐mat communities. At Highborne Cay, in the Bahamas, the carbonate component of these features is mostly comprised of ooids. These are small, spherical to ellipsoidal grains characterized by concentric layers of calcium carbonate and organic matter and these sand‐sized particles are incorporated with the aid of extra‐cellular polymeric substances (EPS), into the matrix of laminated stromatolites and clotted thrombolite mats. Here, we present a comparison of the bacterial diversity within oolitic sand samples and bacterial diversity previously reported in thrombolitic and stromatolitic mats of Highborne Cay based on analysis of clone libraries of small subunit ribosomal RNA gene fragments and lipid biomarkers. The 16S‐rRNA data indicate that the overall bacterial diversity within ooids is comparable to that found within thrombolites and stromatolites of Highborne Cay, and this significant overlap in taxonomic groups suggests that ooid sands may be a source for much of the bacterial diversity found in the local microbialites. Cyanobacteria were the most diverse taxonomic group detected, followed by Alphaproteobacteria, Gammaproteobacteria, Planctomyces, Deltaproteobacteria, and several other groups also found in mat structures. The distributions of intact polar lipids, the fatty acids derived from them, and bacteriohopanepolyols provide broad general support for the bacterial diversity identified through analysis of nucleic acid clone libraries.  相似文献   

10.
The impairment of water quality by faecal pollution is a global public health concern. Microbial source tracking methods help to identify faecal sources but the few recent quantitative microbial source tracking applications disregarded catchment hydrology and pollution dynamics. This quantitative microbial source tracking study, conducted in a large karstic spring catchment potentially influenced by humans and ruminant animals, was based on a tiered sampling approach: a 31-month water quality monitoring (Monitoring) covering seasonal hydrological dynamics and an investigation of flood events (Events) as periods of the strongest pollution. The detection of a ruminant-specific and a human-specific faecal Bacteroidetes marker by quantitative real-time PCR was complemented by standard microbiological and on-line hydrological parameters. Both quantitative microbial source tracking markers were detected in spring water during Monitoring and Events, with preponderance of the ruminant-specific marker. Applying multiparametric analysis of all data allowed linking the ruminant-specific marker to general faecal pollution indicators, especially during Events. Up to 80% of the variation of faecal indicator levels during Events could be explained by ruminant-specific marker levels proving the dominance of ruminant faecal sources in the catchment. Furthermore, soil was ruled out as a source of quantitative microbial source tracking markers. This study demonstrates the applicability of quantitative microbial source tracking methods and highlights the prerequisite of considering hydrological catchment dynamics in source tracking study design.  相似文献   

11.
AIMS: The utility of coliphages to detect and track faecal pollution was evaluated using South Carolina surface waters that exceeded State faecal coliform standards. METHODS AND RESULTS: Coliphages were isolated from 117 surface water samples by single agar layer (SAL) and enrichment presence/absence (EP/A) methods. Confirmed F+ RNA coliphages were typed for microbial source tracking using a library-independent approach. Concentrations of somatic coliphages using 37 and 44.5 degrees C incubation temperatures were found to be significantly different and the higher temperature may be more specific for faecal contamination. The EP/A technique detected coliphages infecting Escherichia coli Famp in 38 (66%) of the 58 surface water samples negative for F+ coliphages by the SAL method. However, coliphages isolated by EP/A were found to be less representative of coliphage diversity within a sample. Among the 2939 coliphage isolates tested from surface water and known source samples, 813 (28%) were found to be F+ RNA. The majority (94%) of surface water F+ RNA coliphage isolates typed as group I. Group II and/or III viruses were identified from 14 surface water stations, the majority of which were downstream of wastewater discharges. These sites were likely contaminated by human-source faecal pollution. CONCLUSIONS: The results suggest that faecal contamination in surface waters can be detected and source identifications aided by coliphage analyses. SIGNIFICANCE AND IMPACT OF THE STUDY: This study supports the premise that coliphage typing can provide useful, but not absolute, information to distinguish human from animal sources of faecal pollution. Furthermore, the comparison of coliphage isolation methods detailed in this study should provide valuable information to those wishing to incorporate coliphage detection into water quality assessments.  相似文献   

12.
Aims:  Microbial water quality and possible human sources of faecal pollution were assessed in a Florida estuary that serves shellfishing and recreational activities.
Methods and Results:  Indicator organisms (IO), including faecal coliforms, Escherichia coli and enterococci, were quantified from marine and river waters, sediments and oysters. Florida recreational water standards were infrequently exceeded (6–10% of samples); however, shellfishing standards were more frequently exceeded (28%). IO concentrations in oysters and overlaying waters were significantly correlated, but oyster and sediment IO concentrations were uncorrelated. The human-associated esp gene of Enterococcus faecium was detected in marine and fresh waters at sites with suspected human sewage contamination. Lagrangian drifters, used to determine the pathways of bacterial transport and deposition, suggested that sediment deposition from the Ochlockonee River contributes to frequent detection of esp at a Gulf of Mexico beach.
Conclusions:  These data indicate that human faecal pollution affects water quality in Wakulla County and that local topography and hydrology play a role in bacterial transport and deposition.
Significance and Impact of the Study:  A combination of IO enumeration, microbial source tracking methods and regional hydrological study can reliably inform regulatory agencies of IO sources, improving risk assessment and pollution mitigation in impaired waters.  相似文献   

13.
Soil quality assessment is necessary to detect changes on soil properties among different management practices. Some microbial properties could be useful to predict changes in soil providing an integrated and relevant vision of soil functioning. The aim of this work was to evaluate and compare different methods to assess microbial diversity, such as methyl ester fatty acids (PLFA) and catabolic response profiles (CRP) to act as indicators of soil functioning. The study was carried out in an intensive horticulture production system. Undisturbed soil, 5 years plots, and more than 20 years plots under organic and conventional production were studied. Principal component analysis followed by multivariate discriminate analysis showed that d-glucose, d-glucosamine, α-ketobutyric, α-ketoglutaric and uric acids were the substrates with the highest sensitivity to separate situations. The same analysis was performed for PLFA, showing that C18:1w9, C13:0, C16:1w9, C14:0, i15:0 and cy19:0 methyl ester fatty acids were the most sensitive. Multivariate analysis of variance of selected substrates and fatty acids showed that CRP and PLFA techniques were both capable to characterize the studied systems. Saturated/monounsaturated (S/M), iso/anteiso (i/a) and cyclopropyl/precursors (cy/pre) microbial stress indicators were higher in plots under conventional management, presenting also these situations the lowest microbial biomass and fungi/bacteria ratio (F/B), especially in plots under conventional management for more than 20 years. Microbial functional diversity, calculated as evenness (E) from CRP was capable to distinguish between all situations and management systems showing the potential of this measurement to act as an integrative indicator of soil functioning.  相似文献   

14.
Water quality was assessed at two marine beaches in California by measuring the concentrations of culturable fecal indicator bacteria (FIB) and by library-independent microbial source tracking (MST) methods targeting markers of human-associated microbes (human polyomavirus [HPyV] PCR and quantitative PCR, Methanobrevibacter smithii PCR, and Bacteroides sp. strain HF183 PCR) and a human pathogen (adenovirus by nested PCR). FIB levels periodically exceeded regulatory thresholds at Doheny and Avalon Beaches for enterococci (28.5% and 31.7% of samples, respectively) and fecal coliforms (20% and 5.8%, respectively). Adenoviruses were detected at four of five sites at Doheny Beach and were correlated with detection of HPyVs and human Bacteroides HF183; however, adenoviruses were not detected at Avalon Beach. The most frequently detected human source marker at both beaches was Bacteroides HF183, which was detected in 27% of samples. Correlations between FIBs and human markers were much more frequent at Doheny Beach than at Avalon Beach; e.g., adenovirus was correlated with HPyVs and HF183. Human sewage markers and adenoviruses were routinely detected in samples meeting FIB regulatory standards. The toolbox approach of FIB measurement coupled with analysis of several MST markers targeting human pathogens used here demonstrated that human sewage is at least partly responsible for the degradation of water quality, particularly at Doheny Beach, and resulted in a more definitive assessment of recreational water quality and human health risk than reliance on FIB concentrations alone could have provided.  相似文献   

15.
We describe the development and validation of a method for the qualitative analysis of complex bifidobacterial communities based on PCR and denaturing gradient gel electrophoresis (DGGE). Bifidobacterium genus-specific primers were used to amplify an approximately 520-bp fragment from the 16S ribosomal DNA (rDNA), and the fragments were separated in a sequence-specific manner in DGGE. PCR products of the same length from different bifidobacterial species showed good separation upon DGGE. DGGE of fecal 16S rDNA amplicons from five adult individuals showed host-specific populations of bifidobacteria that were stable over a period of 4 weeks. Sequencing of fecal amplicons resulted in Bifidobacterium-like sequences, confirming that the profiles indeed represent the bifidobacterial population of feces. Bifidobacterium adolescentis was found to be the most common species in feces of the human adult subjects in this study. The methodological approach revealed intragenomic 16S rDNA heterogeneity in the type strain of B. adolescentis, E-981074. The strain was found to harbor five copies of 16S rDNA, two of which were sequenced. The two 16S rDNA sequences of B. adolescentis E-981074(T) exhibited microheterogeneity differing in eight positions over almost the total length of the gene.  相似文献   

16.
17.
Bifidobacterium spp. belong to the commensal intestinal microbiota of warm-blooded animals. Some strains of Bifidobacterium show host specificity and have thus been proposed as host-specific targets to determine the origin of fecal pollution. Most strains have been used in microbial-source-tracking (MST) studies based on culture-dependent methods. Although some of these approaches have proved very useful, the low prevalence of culturable Bifidobacterium strains in the environment means that molecular culture-independent procedures could provide practical applications for MST. Reported here is a set of common primers and four Bifidobacterium sp. host-associated (human, cattle, pig, and poultry) probes for quantitative-PCR (qPCR) assessment of fecal source tracking. This set was tested using 25 water samples of diverse origin: urban sewage samples, wastewater from four abattoirs (porcine, bovine, and poultry), and water from a river with a low pollution load. The selected sequences showed a high degree of host specificity. There were no cross-reactions between the qPCR assays specific for each origin and samples from different fecal origins. On the basis of the findings, it was concluded that the host-specific qPCRs are sufficiently robust to be applied in environmental MST studies.  相似文献   

18.
The key role of arbuscular mycorrhizal (AM) fungi in maintaining soil fertility and ecosystem functioning and their general sensitivity to pesticides make them good candidate bioindicators in pesticide soil microbial toxicity assessment. We investigated the impact of the herbicide nicosulfuron on mycorrhizal colonization and community structure of AM fungi via a pot-to-field experimental approach. This allowed the assessment of nicosulfuron toxicity (i) at extreme exposure schemes (pot experiment, Tier I) invoked by the repeated application of a range of dose rates (x0, x10, x100, x1000 the recommended dose) and (ii) under realistic exposure scenarios (x0, x1, x2, x5 the recommended dose) in the field (Tier II). In the pot experiment, the x100 and x1000 dose rates significantly reduced plant biomass, mycorrhizal colonization and AM fungal richness as determined by DGGE. This coincided with the progressive accumulation of herbicide concentrations in soil. In contrast, no effects on AM fungi were observed at the nicosulfuron dose rates tested in the field. Clone libraries showed that the majority of AM fungi belonged to the Glomus group and were sensitive to the high levels of nicosulfuron accumulated in soil at the latter culture cycles. In contrast, a Paraglomeraceae and a Glomus etunicatum ribotype were present in maize roots in all cycles and dose rates implying a tolerance to nicosulfuron-induced stress. Overall, the deleterious effects of nicosulfuron on AM fungi induced by the highest dose rates in the pot experiment could be attributed either to fungal-driven toxicity or to plant-driven effects which have subsequent implications for mycorrhizal symbiosis. We suggest that the tiered pot-to-field experimental approach followed in our study combined with classic and standardized molecular tools could provide a realistic assessment of the toxicity of pesticides onto AM fungi as potential bioindicators.  相似文献   

19.
20.
Yale's Microbial Diversity Institute (MDI) comprises scientists who seek to understand the largely unknown microbial world. In the first MDI symposium at Yale's West Campus in October 2010, four speakers discussed their research in diverse fields within the microbial sciences. The highlights of the symposium are presented here along with an outlook on the future of the MDI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号