首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation rates of polioviruses 1 and 3 and coxsackieviruses A-13 and B-1 were determined in situ in the Rio Grande in southern New Mexico, using membrane dialysis chambers. Inactivation of the viruses was exponential, and the rates of inactivation were apparently affected principally by the water temperature. Stability of the viruses in river water differed, with poliovirus 1 and coxsackie B-1 being most stable. Typically 1-log reductions of infectivity at water temperatures ranging between 23 and 27 degrees C required 25 h for poliovirus 1, 19 h for poliovirus 3, and 7 h for coxsackie virus A-13. At water temperatures of 4 to 8 degrees C, the log reduction times for poliovirus 1 and coxsackievirus B-1 were 46 and 58 h, respectively. Results obtained with labeled poliovirus 1 and coxsackievirus B-1 and with infectious ribonucleic acid indicate that inactivation was due to damage to viral ribonucleic acid. Virus-inactivation rates were also affected by heat sterilization of river water, indicating the presence of a heat-labile or volatile inactivating factor. The inactivating factor in Rio Grande water was apparently present at a constant concentration over a 1-year period.  相似文献   

2.
Inactivation of polioviruses and coxsackieviruses in surface water.   总被引:10,自引:10,他引:0       下载免费PDF全文
Inactivation rates of polioviruses 1 and 3 and coxsackieviruses A-13 and B-1 were determined in situ in the Rio Grande in southern New Mexico, using membrane dialysis chambers. Inactivation of the viruses was exponential, and the rates of inactivation were apparently affected principally by the water temperature. Stability of the viruses in river water differed, with poliovirus 1 and coxsackie B-1 being most stable. Typically 1-log reductions of infectivity at water temperatures ranging between 23 and 27 degrees C required 25 h for poliovirus 1, 19 h for poliovirus 3, and 7 h for coxsackie virus A-13. At water temperatures of 4 to 8 degrees C, the log reduction times for poliovirus 1 and coxsackievirus B-1 were 46 and 58 h, respectively. Results obtained with labeled poliovirus 1 and coxsackievirus B-1 and with infectious ribonucleic acid indicate that inactivation was due to damage to viral ribonucleic acid. Virus-inactivation rates were also affected by heat sterilization of river water, indicating the presence of a heat-labile or volatile inactivating factor. The inactivating factor in Rio Grande water was apparently present at a constant concentration over a 1-year period.  相似文献   

3.
Giardia lamblia cysts were harvested from Mongolian gerbils and exposed to free chlorine in buffered water at pH 5, 7, and 9 at 15 degrees C. The contact times required to obtain a 2-log reduction in cyst survival (i.e., a 99% kill) were interpolated from survival curves generated at fixed concentrations of chlorine in the range of 0.25 to about 16 mg/liter. Concentration-time (C.t') products for 99% inactivation ranged from about 120 to nearly 1,500 mg.min/liter. These values are higher than those reported previously for free chlorine using G. lamblia cysts from infected humans. The cysts isolated from gerbils, as with other Giardia cysts, were unusually sensitive to chlorine in alkaline solutions.  相似文献   

4.
Giardia lamblia cysts were harvested from Mongolian gerbils and exposed to free chlorine in buffered water at pH 5, 7, and 9 at 15 degrees C. The contact times required to obtain a 2-log reduction in cyst survival (i.e., a 99% kill) were interpolated from survival curves generated at fixed concentrations of chlorine in the range of 0.25 to about 16 mg/liter. Concentration-time (C.t') products for 99% inactivation ranged from about 120 to nearly 1,500 mg.min/liter. These values are higher than those reported previously for free chlorine using G. lamblia cysts from infected humans. The cysts isolated from gerbils, as with other Giardia cysts, were unusually sensitive to chlorine in alkaline solutions.  相似文献   

5.
6.
Apple juice prepared from 'Annurca' apple puree was treated with a HPCD batch system. The pH, °Brix, color parameters and microbial load of the treated apple juice were compared with those of thermally processed juice. Thermal processes were carried out at 35, 50, 65, 85°C and treatment times ranging between 10 and 140 minutes. Microbial inactivation kinetics indicated that 5-log reduction of natural flora in apple juice was achieved at 85°C and 60 minutes of treatment time for conventional thermal process and at 16.0 MPa, 60°C and 40 minutes for HPCD process. Results suggested that temperature played a fundamental role on HPCD treatment efficiency, with inactivation significantly enhanced when it increased from 35 to 60°C. Less significant was the role of the pressure at the tested levels of 7.0, 13.0 and 16.0 MPa. Also, 5-log reduction of natural flora in apple juice was obtained at lower temperatures by cyclic treatments of six compression and decompression steps. There were no significant differences between treated and untreated samples in °Brix (α = 0.05). Significant differences were detected in pH values between the untreated and HPCD treated samples (α = 0.05). There was a significant decrease in 'L*' and 'b*' values and also differences were detected in 'a*' values between the untreated and the HPCD treated samples (α = 0.05). Statistical analysis for °Brix, pH and color data showed no differences between the untreated and HPCD treated samples in the first 2 weeks of storage at 4°C. These results emphasize the potential use of HPCD in industrial applications.  相似文献   

7.
Stability of simian rotavirus in fresh and estuarine water.   总被引:8,自引:8,他引:0       下载免费PDF全文
The rates of inactivation of poliovirus 1, echovirus 7, coxsackievirus B3, and simian rotavirus SA11 were compared in polluted and nonpolluted fresh and estaurine water samples. The study was done in two parts, comparing virus survival in samples taken 1 year apart from the same sites. The survival studies were performed at 20 degrees C and at the natural pH of the water samples. In the first part of the study, the time required for a 3-log10 reduction in the initial virus titers was 2 to 3 days in the estaurine water samples and varied from 3 to greater than 14 days in the freshwater samples. In the second part of the study, no clear distinction was found between survival of viruses in freshwater samples and survival in estaurine water samples. The time required for a 3-log10 reduction in the initial virus titers in the second part of the study varied from 12 to greater than 14 days. This indicates that there is a nonseasonal change in factors in the water which affect virus survival. In this study SA11 survival time (used as a model for human virus) was well within the range exhibited by the enteroviruses, indicating that it also is environmentally stable in natural waters.  相似文献   

8.
AIMS: This study aimed to apply differential scanning calorimetry (DSC) to evaluate the thermal inactivation kinetics of bacteria. METHODS AND RESULTS: The apparent enthalpy (DeltaH) of Escherichia coli cells was evaluated by a temperature scan in a DSC after thermal pretreatment in the calorimeter to various temperatures between 56 and 80 degrees C. Conventional semilogarithmic survival curve analysis was combined with a linearly increasing temperature protocol. Calorimetrically determined D and z values were compared to those obtained from plate count data collected under isothermal conditions to validate the new approach. CONCLUSIONS: The calculated D values using both apparent enthalpy and viability data for cells heat treated in the DSC were similar to the D values obtained from isothermal treatment. Temperatures for 1 through 10-log microbial population reductions, calculated from plate count and enthalpy data, were in agreement within 0.5-2.4 degrees C at a 4 degrees C min-1 heating rate. SIGNIFICANCE AND IMPACT OF THE STUDY: This novel calorimetric method provides an approach to obtain accurate and reproducible kinetic parameters for inactivation. The calorimetric method here described is time efficient and is conducted under conditions similar to food processing conditions.  相似文献   

9.
Inactivation of microorganisms with pulsed electric fields is one of the nonthermal methods most commonly used in biotechnological applications such as liquid food pasteurization and water treatment. In this study, the effects of microsecond and nanosecond pulses on inactivation of Escherichia coli in distilled water were investigated. Bacterial colonies were counted on agar plates, and the count was expressed as colony-forming units per milliliter of bacterial suspension. Inactivation of bacterial cells was shown as the reduction of colony-forming units per milliliter of treated samples compared to untreated control. According to our results, when using microsecond pulses the level of inactivation increases with application of more intense electric field strengths and with number of pulses delivered. Almost 2-log reductions in bacterial counts were achieved at a field strength of 30 kV/cm with eight pulses and a 4.5-log reduction was observed at the same field strength using 48 pulses. Extending the duration of microsecond pulses from 100 to 250 μs showed no improvement in inactivation. Nanosecond pulses alone did not have any detectable effect on inactivation of E. coli regardless of the treatment time, but a significant 3-log reduction was achieved in combination with microsecond pulses.  相似文献   

10.
Solar disinfection (SODIS) of drinking water in polyethylene terephthalate (PET) bottles is a simple, efficient point-of-use technique for the inactivation of many bacterial pathogens. In contrast, the efficiency of SODIS against viruses is not well known. In this work, we studied the inactivation of bacteriophages (MS2 and ϕX174) and human viruses (echovirus 11 and adenovirus type 2) by SODIS. We conducted experiments in PET bottles exposed to (simulated) sunlight at different temperatures (15, 22, 26, and 40°C) and in water sources of diverse compositions and origins (India and Switzerland). Good inactivation of MS2 (>6-log inactivation after exposure to a total fluence of 1.34 kJ/cm2) was achieved in Swiss tap water at 22°C, while less-efficient inactivation was observed in Indian waters and for echovirus (1.5-log inactivation at the same fluence). The DNA viruses studied, ϕX174 and adenovirus, were resistant to SODIS, and the inactivation observed was equivalent to that occurring in the dark. High temperatures enhanced MS2 inactivation substantially; at 40°C, 3-log inactivation was achieved in Swiss tap water after exposure to a fluence of only 0.18 kJ/cm2. Overall, our findings demonstrate that SODIS may reduce the load of single-stranded RNA (ssRNA) viruses, such as echoviruses, particularly at high temperatures and in photoreactive matrices. In contrast, complementary measures may be needed to ensure efficient inactivation during SODIS of DNA viruses resistant to oxidation.  相似文献   

11.
Analyses of survival data of a mixture of Salmonella spp. at fixed temperatures between 55 degrees C (131 degrees F) and 71.1 degrees C (160 degrees F) in ground beef matrices containing concentrations of salt between 0 and 4.5%, concentrations of sodium pyrophosphate (SPP) between 0 and 0.5%, and concentrations of sodium lactate (NaL) between 0 and 4.5% indicated that heat resistance of Salmonella increases with increasing levels of SPP and salt, except that, for salt, for larger lethalities close to 6.5, the effect of salt was evident only at low temperatures (<64 degrees C). NaL did not seem to affect the heat resistance of Salmonella as much as the effects induced by the other variables studied. An omnibus model for predicting the lethality for given times and temperatures for ground beef matrices within the range studied was developed that reflects the convex survival curves that were observed. However, the standard errors of the predicted lethalities from this models are large, so consequently, a model, specific for predicting the times needed to obtained a lethality of 6.5 log(10), was developed, using estimated results of times derived from the individual survival curves. For the latter model, the coefficient of variation (CV) of predicted times range from about 6 to 25%. For example, at 60 degrees C, when increasing the concentration of salt from 0 to 4.5%, and assuming that the concentration of SPP is 0%, the time to reach a 6.5-log(10) relative reduction is predicted to increase from 20 min (CV = 11%) to 48 min (CV = 15%), a 2.4 factor (CV = 19%). At 71.1 degrees C (160 degrees F) the model predicts that more than 0.5 min is needed to achieve a 6.5-log(10) relative reduction.  相似文献   

12.
The kinetics of thermal inactivation of bovine carbonic anhydrase (BCA) was studied in a 50 mM Tris-HCl buffer, pH 7.8 using p-nitrophenyl acetate as substrate in absorbance of 400 nm by UV-VIS spectrophotometry. The number of conformational locks and inter-subunit amino acid residues of BCA were obtained by thermal inactivation analysis. The cleavage bonds between dimers of BCA during thermal dissociation and type of interactions between specific amino acid residues were also detected. The thermal inactivation curves were plotted in temperatures ranging between 40-70°C. It was shown several phases for inactivation of BCA at 65°C. Analyses of the curves were done by the conformational lock theory. The subunits are dissociated and several intermediates appear during inactivation through increasing the temperature in comparison with native state. Dynamic light scattering measurements was done to study the changes in hydrodynamic radius during thermal inactivation. Three distinct zones were shown in DLS data. Biochemical computation using ligplot is performed to find the inter-subunit amino acid residues for BCA.  相似文献   

13.
Xylotrechus arvicola Olivier (Coleoptera: Cerambycidae) has become a new expanding pest in grape (Vitis spp.) crops. To better improve control tactics, the consequences of 11 constant (12, 15, 18, 21, 24, 27, 30, 32, 34, 35 and 36°C) and nine variable temperatures (with equal mean temperatures at each of the nine constant rates ranging from 15 to 35°C) on survival and embryonic development were studied. The eggs were able to complete development at constant temperatures between 15 and 35°C, with mortality rates at the extremes of the range of two and 81.5%, respectively. Using variable temperatures a mortality rate of 38.9% at a mean temperature of 15°C and 99% at 35°C was observed. The range of time for embryonic development was 29.5 d at 15°C to 6 d at 32°C at constant temperatures, and from 29.6 d at 15°C to 7.2 d at 32°C at variable temperatures. The goodness-of-fit of different development models was evaluated for the relationship between the development rate and temperature. The models that gave the best fit were the Logan type III for constant temperatures and the Brière for variable temperatures. Optimum temperatures were estimated to be from 31.7 to 32.9°C. The models that best described embryo development under natural field conditions were the Logan type III model for constant temperatures (98.7% adjustment) and the Lactin model for variable temperatures (99.2% adjustment). Nonlinear models predicted faster development at constant temperatures and slower development at variable ones when compared with real field development, whereas the linear model always predicted faster development than what actually took place.  相似文献   

14.
Persistence of Salmonella typhimurium on Fabrics   总被引:3,自引:3,他引:0       下载免费PDF全文
The objective of this study was to determine the feasibility of using airborne T3 coliphage as a viral tracer in microbial aerosols. Although T3 coliphage was relatively stable when stored either at temperatures ranging from 21 to 37 C or in the frozen state at -20 C, there was a 2-log loss in infectivity when stored for 72 days at 4 C. Either agitation of stored coliphage suspensions held at 31 C or wide fluctuations in storage temperature produced an increased loss of infectivity. In the airborne state, freshly prepared coliphage and stored coliphage behaved similarly, with survival diminishing as the relative humidity (RH) was lowered. The greatest loss occurred during the first five min following aerosolization. The results showed that only under certain conditions of temperature and relative humidity can T3 coliphage be used as a satisfactory aerosol tracer.  相似文献   

15.
AIM: To develop a method to calculate microbial survival parameters in water treated with a dissipating disinfectant and predict the inactivation patterns under different agent concentrations and decay rate regimes. METHODS AND RESULTS: It has been assumed that the survival curves of the organism, under (hypothetical) constant agent concentration conditions, follow the power law model log [N(t)/N0] = -btn with a concentration independent exponent, n. The concentration dependence of the 'rate parameter', b, has been assumed to obey a log logistic relationship. Under changing disinfectant concentration, the survival curve is constructed so that its local slope, i.e. momentary logarithmic inactivation rate of the organism, is the slope of the momentary 'constant concentration' curve at the momentary agent concentration, at the time which corresponds to the momentary survival ratio. The resulting differential equation was used to retrieve the survival parameters by numerical minimization procedures. Once these are calculated, the equation is solved numerically to produce the survival curve for almost any conceivable agent concentration history. The predictive ability of the method is demonstrated by using the survival parameters, calculated from published data obtained under one concentration profile, to predict survival curves under very different decay patterns. CONCLUSIONS: It is possible to calculate microbial survival parameters from data obtained in treatments where the unstable or volatile disinfectant progressively dissipates and use them to predict the outcome of different treatments. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed mathematical method will enable the prediction of microbial inactivation patterns in water treated with unstable and/or volatile chemical agents.  相似文献   

16.
The objective of this study was to determine the feasibility of using airborne T3 coliphage as a viral tracer in microbial aerosols. Although T3 coliphage was relatively stable when stored either at temperatures ranging from 21 to 37 C or in the frozen state at -20 C, there was a 2-log loss in infectivity when stored for 72 days at 4 C. Either agitation of stored coliphage suspensions held at 31 C or wide fluctuations in storage temperature produced an increased loss of infectivity. In the airborne state, freshly prepared coliphage and stored coliphage behaved similarly, with survival diminishing as the relative humidity (RH) was lowered. The greatest loss occurred during the first five min following aerosolization. The results showed that only under certain conditions of temperature and relative humidity can T3 coliphage be used as a satisfactory aerosol tracer.  相似文献   

17.
A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.  相似文献   

18.
The diamondback moth, Plutella xylostella (L.), is the most important pest of brassicaceous crops worldwide. Since temperature is the major abiotic factor influencing insect development and thermal requirements may vary among insect populations, it is important to know the effect of temperature on development and survival of a subtropical strain of P. xylostella. Development and survival of the diamondback moth was evaluated under seven constant temperatures ranging from 10°C to 35°C. Development was completed between 10°C and 32.5°C, but at 35°C all individuals died in the larval stage. Data were fitted to one linear and five nonlinear models. Considering as criteria the goodness of fit and the ability to estimate parameters of biological significance, the models Briere-1 and Briere-2 were the most adequate to describe the relationship between temperature and development of P. xylostella. The linear model demonstrated that P. xylostella required 312.5 degree-days above a lower threshold of 6.3°C to complete development. The degree-day model showed that the number of diamondback moth generations in the tropical region of Brazil is nearly twice the number in the subtropical region of the country. This result explains, at least in part, the higher population levels of this species in the tropical region of Brazil, and also demonstrates that P. xylostella is tolerant to a wide range of temperatures (6.1-32.5°C). Therefore, temperature cannot be considered a limiting factor for the occurrence of diamondback moth throughout the year in most regions of Brazil.  相似文献   

19.
The long-term survival of three human enterovirus serotypes, Coxsackievirus B3, echovirus 7, and poliovirus 1 was examined in samples of surface freshwater collected from five sites of physically different character. These were an artificial lake created by damming a creek, a small groundwater outlet pond, both a large- and a medium-sized river, and a small suburban creek. Survival was studied at temperatures of -20, 1, and 22 degrees C. The average amount of viral inactivation was 6.5-7.0 log10 units over 8 weeks at 22 degrees C, 4-5 log10 units over 12 weeks at 1 degree C, and 0.4-0.8 log10 units over 12 weeks at -20 degrees C. The effect of incubation temperature upon viral inactivation rate was statistically significant (p less than 0.00001). As determined by pairing tests, survival was also significantly related to both viral serotype and water source at each of the three incubation temperatures (p less than or equal to 0.05). Efforts were made to determine whether the rate of viral inactivation observed at the different incubation temperatures was related to characteristics inherent to the water that was collected from the different locations. The characteristics examined included physical and chemical parameters, indigenous bacterial counts, and the amount of bacterial growth that the waters would support (measured as the maximum number of generations which seeded bacteria could undergo after being placed into either pasteurized or sterile-filtered water samples). Analysis of viral inactivation rate versus these characteristics revealed three apparent effectors of viral persistence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
AIMS: Chlorine demand by Listeria monocytogenes cells and inactivation of L. monocytogenes by chlorine (0.6-1.0 mg l(-1)) at different temperatures (4, 20 and 30 degrees C) have been investigated in a batch reactor. METHODS AND RESULTS: Chlorine demand depended on the microbial concentration and was independent on the initial chlorine concentration and temperature. Chlorine decay was modelled by the addition of two first-order decay equations. Inactivation of L. monocytogenes by chlorine depended on the initial microbial concentration, initial chlorine concentration and temperature. A mathematical model based on a biphasic inactivation properly described survival curves of L. monocytogenes and a tertiary model was developed that satisfactorily predicted the inactivation of L. monocytogenes by different concentrations of initial chlorine at different temperatures. CONCLUSIONS: Both available chlorine decay and inactivation of L. monocytogenes by chlorine were biphasic and can be modelled by a two-term exponential model. SIGNIFICANCE AND IMPACT OF THE STUDY: The biphasic nature of survival curves of L. monocytogenes did not reflect the effect of a change of available chlorine concentration during the treatment. The microbial inactivation was caused by successive reactions that occur after the consumption of the chlorine by the bacterial cell components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号