首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Pompe disease (Glycogen storage disease type II, GSD II, acid alpha-glucosidase deficiency, acid maltase deficiency, OMIM # 232300) is an autosomal-recessive lysosomal storage disorder due to a deficiency of acid alpha-glucosidase (GAA, acid maltase, EC 3.2.1.20, Swiss-Prot P10253). Clinical manifestations are dominated by progressive weakness of skeletal muscle throughout the clinical spectrum. In addition, the classic infantile form is characterised by hypertrophic cardiomyopathy. Methods: In a cross-sectional single-centre study we clinically assessed 3 patients with classic infantile Pompe disease and 39 patients with non-classic presentations, measured their acid alpha-glucosidase activities and analysed their GAA genes. Results: Classic infantile patients had nearly absent residual enzyme activities and a typical clinical course with hypertrophic cardiomyopathy until the beginning of therapy. The disease manifestations in non-classic patients were heterogeneous. There was a broad variability in the decline of locomotive and respiratory function. The age of onset ranged from birth to late adulthood and correlated with enzyme activities. Molecular analysis revealed as many as 33 different mutations, 14 of which are novel. All classic infantile patients had two severe mutations. The most common mutation in the non-classic group was c.-32-13T>G. It was associated with a milder course in this subgroup. Conclusion: Disease manifestation strongly correlates with the nature of the GAA mutations, while the variable progression in non-classic Pompe disease is likely to be explained by yet unknown modifying factors. This study provides the first comprehensive dataset on the clinical course and the mutational spectrum of Pompe disease in Germany.  相似文献   

2.

Background

Pompe disease has a broad clinical spectrum, in which the phenotype is partially explained by the genotype. The aim of this study was to describe phenotypical variation among siblings with non-classic Pompe disease. We hypothesized that siblings and families with the same genotype share more similar phenotypes than the total population of non-classic Pompe patients, and that this might reveal genotype-phenotype correlations.

Methods

We identified all Dutch families in which two or three siblings were diagnosed with Pompe disease and described genotype, acid α-glucosidase activity, age at symptom onset, presenting symptoms, specific clinical features, mobility and ventilator dependency.

Results

We identified 22 families comprising two or three siblings. All carried the most common mutation c.-32-13 T?>?G in combination with another pathogenic mutation. The median age at symptom onset was 33 years (range 1–62 years). Within sibships symptom onset was either in childhood or in adulthood. The median variation in symptom onset between siblings was nine years (range 0–31 years). Presenting symptoms were similar across siblings in 14 out of 22 families. Limb girdle weakness was most frequently reported. In some families ptosis or bulbar weakness were present in all siblings. A large variation in disease severity (based on wheelchair/ventilator dependency) was observed in 11 families. This variation did not always result from a difference in duration of the disease since a third of the less affected siblings had a longer course of the disease. Enzyme activity could not explain this variation either. In most families male patients were more severely affected. Finally, symptom onset varied substantially in twelve families despite the same GAA genotype.

Conclusion

In most families with non-classic Pompe disease siblings share a similar phenotype regarding symptom onset, presenting symptoms and specific clinical features. However, in some families the course and severity of disease varied substantially. This phenotypical variation was also observed in families with identical GAA genotypes. The commonalities and differences indicate that besides genotype, other factors such as epigenetic and environmental effects influence the clinical presentation and disease course.
  相似文献   

3.
Pompe disease is an autosomal recessive lysosomal glycogen storage disorder that is caused by acid α-glucosidase (GAA) deficiency and is due to pathogenic sequence variations in the corresponding GAA gene. The correlation between genotypes and phenotypes is strict, in that patients with the most severe phenotype, classic infantile Pompe disease, have two pathogenic mutations, one in each GAA allele, that prevent the formation of GAA or totally obliterates its function. All patients with less progressive phenotypes have at least one sequence variation that allows normal or low level synthesis of GAA leading to the formation of analytically measurable, low level GAA activity in most cases. There is an overall trend of finding higher GAA enzyme levels in patients with onset of symptoms in adulthood when compared to patients who show clinical manifestations in early childhood, aged 0-5 years, with a rapidly progressive course, but who lack the severe characteristics of classic infantile Pompe disease. However, several cases have been reported of adult-onset disease with very low GAA activity, which in all those cases corresponds with the GAA genotype. The clinical diversity observed within a large group of patients with functionally the same GAA genotype and the same c.-32-13C?>?T haplotype demonstrates that modifying factors can have a substantial effect on the clinical course of Pompe disease, disturbing the GAA genotype-phenotype correlation. The present day challenge is to identify these factors and explore them as therapeutic targets.  相似文献   

4.
Glycogen storage disease type II or Pompe disease (GSD II, MIM 232300) is a rare inherited metabolic myopathy caused by a deficiency of lysosomal acid α-glucosidase or acid maltase (GAA; EC 3.2.1.20), resulting in a massive lysosomal glycogen accumulation in cardiac and skeletal muscles. Affected individuals exhibit either severe hypotonia associated with hypertrophic cardiomyopathy (infantile forms) or progressive muscle weakness (late-onset forms). Even if enzyme replacement therapy has recently become a standard treatment, it suffers from several limitations. This review will present the main results of enzyme replacement therapy and the recent findings concerning alternative treatments for Pompe disease, such as gene therapy, enzyme enhancement therapy, and substrate reduction therapy.  相似文献   

5.

Background

Neonatal screening for Pompe disease has been introduced in Taiwan and a few U.S. states, while other jurisdictions including some European countries are piloting or considering this screening. First-tier screening flags both classic infantile and late-onset Pompe disease, which challenges current screening criteria. Previously, advocacy groups have sometimes supported expanded neonatal screening more than professional experts, while neutral citizens' views were unknown. This study aimed to measure support for neonatal screening for Pompe disease in the general public and to compare it to support among (parents of) patients with this condition. The study was done in the Netherlands, where newborns are not currently screened for Pompe disease. Newborn screening is not mandatory in the Netherlands but current uptake is almost universal.

Methods

A consumer panel (neutral group) and (parents of) patients with Pompe disease (Pompe group) were sent information and a questionnaire. Responses were analyzed of 555 neutral and 58 Pompe-experienced informants who had demonstrated sufficient understanding.

Results

87% of the neutral group and 88% of the Pompe group supported the introduction of screening (95% CI of difference -10 to 7%). The groups were similar in their moral reasoning about screening and acceptance of false positives, but the Pompe-experienced group expected greater benefit from neonatal detection of late-onset disease. Multivariate regression analysis controlling for demographics confirmed that approval of the introduction of screening was independent of having (a child with) Pompe disease. Furthermore, respondents with university education, regardless of whether they have (a child with) Pompe disease, were more likely to be reluctant about the introduction of screening than those with less education, OR for approval 0.29 (95% CI 0.18 to 0.49, p < 0.001).

Conclusions

This survey suggests a rather high level of support for newborn screening for Pompe disease, not only among those who have personal experience of the disease but also among the general public in the Netherlands. Optional screening on the basis of informed parental consent is probably unrealistic, underlining the need for new guidelines to help policymakers in their consideration of newborn screening for broad phenotype conditions.  相似文献   

6.

Background

Deficiency of complex II (succinate dehydrogenase, SDH) represents a rare cause of mitochondrial disease and is associated with a wide range of clinical symptoms. Recently, mutations of SDHAF1, the gene encoding for the SDH assembly factor 1, were reported in SDH-defective infantile leukoencephalopathy. Our goal was to identify SDHAF1 mutations in further patients and to delineate the clinical phenotype.

Methods

In a retrospective data collection study we identified nine children with biochemically proven complex II deficiency among our cohorts of patients with mitochondrial disorders. The cohort comprised five patients from three families affected by SDH-defective infantile leukoencephalopathy with accumulation of succinate in disordered cerebral white matter, as detected by in vivo proton MR spectroscopy. One of these patients had neuropathological features of Leigh syndrome. Four further unrelated patients of the cohort showed diverse clinical phenotypes without leukoencephalopathy. SDHAF1 was sequenced in all nine patients.

Results

Homozygous mutations of SDHAF1 were detected in all five patients affected by leukoencephalopathy with accumulated succinate, but not in any of the four patients with other, diverse clinical phenotypes. Two sisters had a mutation reported previously, in three patients two novel mutations were found.

Conclusion

Leukoencephalopathy with accumulated succinate is a key symptom of defective complex II assembly due to SDHAF1 mutations.  相似文献   

7.
Enzyme replacement therapy (ERT) for Pompe disease using recombinant acid alpha-glucosidase (rhGAA) has resulted in increased survival although the clinical response is variable. Cross-reactive immunological material (CRIM)-negative status has been recognized as a poor prognostic factor. CRIM-negative patients make no GAA protein and develop sustained high antibody titers to ERT that render the treatment ineffective. Antibody titers are generally low for the majority of CRIM-positive patients and there is typically a better clinical outcome. Because immunomodulation has been found to be most effective in CRIM-negative patients prior to, or shortly after, initiation of ERT, knowledge of CRIM status is important before ERT is begun. We have analyzed 243 patients with infantile Pompe disease using a Western blot method for determining CRIM status and using cultured skin fibroblasts. Sixty-one out of 243 (25.1%) patients tested from various ethnic backgrounds were found to be CRIM-negative. We then correlated the CRIM results with GAA gene mutations where available (52 CRIM-negative and 88 CRIM-positive patients). We found that, in most cases, CRIM status can be predicted from GAA mutations, potentially circumventing the need for invasive skin biopsy and time wasted in culturing cells in the future. Continued studies in this area will help to increase the power of GAA gene mutations in predicting CRIM status as well as possibly identifying CRIM-positive patients who are at risk for developing high antibody titers.  相似文献   

8.
9.
Human acid α-glucosidase (GAA, EC 3.2.1.20) is a lysosomal enzyme that belongs to the glycoside hydrolase family 31 (GH31) and catalyses the hydrolysis of α-1,4- and α-1,6-glucosidic linkages at acid pH. Hereditary deficiency of GAA results in lysosomal glycogen storage disease type II (GSDII, Pompe disease). The aim of this study was to assess GH31 proteins in Caenorhabditis elegans (C. elegans) to identify the ortholog of human GAA. Bioinformatic searches for GAA ortholog in C. elegans genome revealed four acid alpha-glucosidase-related (aagr-14) genes. Multiple sequence alignment of AAGRs with other GH31 proteins demonstrated their evolutionary conservation. Phylogenetic analyses suggested clustering of AAGR-1 and -2 with acid-active and AAGR-3 and -4 with neutral-active GH31 enzymes. In order to prove the AAGRs’ predicted α-glucosidase activity, we performed RNA interference of all four aagr genes. The impact on the α-glucosidase activity was evaluated at pH 4.0 (acid) and pH 6.5 (neutral), with or without the inhibitor acarbose. AAGR-1 and -2 expressed acidic α-glucosidase activity; on the contrary, AAGR-3 not -4 represented the predominant neutral α-glucosidase activity in C. elegans. Similar results were obtained in each of aagr-1 and -4 deletion mutants. Moreover, based on our structural models of AAGRs and these biochemical experiments, we hypothesize that the enzymatic sensitivity of AAGR-2 and human maltase-glucoamylase to the inhibitor acarbose is associated with a tyrosine residue in the GH31 active site, whereas acarbose resistance of AAGR-1 and human GAA is associated with the corresponding tryptophane in the active site. Acid-active AAGR-1 may thus represent the ortholog of human GAA in C. elegans.  相似文献   

10.
Macroautophagy (often referred to as autophagy) is an evolutionarily conserved intracellular system by which macromolecules and organelles are delivered to lysosomes for degradation and recycling. Autophagy is robustly induced in response to starvation in order to generate nutrients and energy through the lysosomal degradation of cytoplasmic components. Constitutive, basal autophagy serves as a quality control mechanism for the elimination of aggregated proteins and worn-out or damaged organelles, such as mitochondria. Research during the last decade has made it clear that malfunctioning or failure of this system is associated with a wide range of human pathologies and age-related diseases. Our recent data provide strong evidence for the role of autophagy in the pathogenesis of Pompe disease, a lysosomal glycogen storage disease caused by deficiency of acid alpha-glucosidase (GAA). Large pools of autophagic debris in skeletal muscle cells can be seen in both our GAA knockout model and patients with Pompe disease. In this review, we will focus on these recent data, and comment on the not so recent observations pointing to the involvement of autophagy in skeletal muscle damage in Pompe disease.  相似文献   

11.
Enzyme replacement therapy (ERT) with alglucosidase alpha, approved by the FDA in 2006, has expanded possibilities for individuals with Pompe disease (glycogen storage disease type II, GSDII, or acid maltase deficiency). Children with infantile Pompe disease are surviving beyond infancy, some achieving independent walking and functional levels never before possible. Individuals with late-onset Pompe disease are experiencing motor and respiratory improvement and/or stabilization with slower progression of impairments. A new phenotype is emerging for those with infantile Pompe disease treated with ERT. This new phenotype appears to be distinct from the late-onset phenotype rather than a shift from infantile to late-onset phenotype that might be expected from a simple diminution of symptoms with ERT. Questions arise regarding the etiology of the distinct distribution of weakness in this new phenotype, with increasing questions regarding exercise and musculoskeletal management. Answers require an increased understanding of the muscle pathology in Pompe disease, how that muscle pathology may be impacted by ERT, and the potential impact of, and need for, other clinical interventions. This article reviews the current state of knowledge regarding the pathology of muscle involvement in Pompe disease and the potential change in muscle pathology with ERT; the newly emerging musculoskeletal and gross motor phenotype of infantile Pompe disease treated with ERT; updated recommendations regarding musculoskeletal management in Pompe disease, particularly in children now surviving longer with residual weakness impacting development and integrity of the musculoskeletal system; and the potential impact and role of exercise in infantile Pompe survivors treated with ERT.  相似文献   

12.
Pompe disease is an autosomal recessive disorder and is caused by a deficiency in acid alpha-glucosidase (GAA). A broad range of studies have been performed on Pompe patients from different countries. However, the clinical course and molecular basis of the disease in Mainland China have not been well defined. In the present study, we examined a total of 18 Chinese children with infantile-onset Pompe disease to better understand the clinical and genetic features in this population. The median age at symptom onset was 3.6 months (range: 1.7–6.8 months) and 6.3 months at diagnosis (range: 2.5–9.3 months). All but 1 patient died at a median age of 8.2 months (range: 4.7–18.7 months). Molecular analysis revealed 20 different mutations, 6 of which are novel (c.1356delC, c.378G > A, c.1827C > G, c.859-2 A > T, c.1551 + 2T > G, and c.1465G > T). The most common mutation in the study was c.1935C > A, accounting for 25% (9/36 alleles) of the mutations. Our study provides the first comprehensive examination of the clinical course of infantile-onset Pompe disease and mutations of the GAA gene for patients in Mainland China. Our results confirm the high prevalence of the c.1935C > A mutation, previously reported for other populations, in Mainland Chinese patients with infantile-onset Pompe disease. Furthermore, six novel mutations in the GAA gene are reported for the first time.  相似文献   

13.
Pompe disease, which results from mutations in the gene encoding the glycogen-degrading lysosomal enzyme acid alpha -glucosidase (GAA) (also called "acid maltase"), causes death in early childhood related to glycogen accumulation in striated muscle and an accompanying infantile-onset cardiomyopathy. The efficacy of enzyme replacement therapy (ERT) with recombinant human GAA was demonstrated during clinical trials that prolonged subjects' overall survival, prolonged ventilator-free survival, and also improved cardiomyopathy, which led to broad-label approval by the U.S. Food and Drug Administration. Patients who lack any residual GAA expression and are deemed negative for cross-reacting immunologic material (CRIM) have a poor response to ERT. We previously showed that gene therapy with an adeno-associated virus (AAV) vector containing a liver-specific promoter elevated the GAA activity in plasma and prevented anti-GAA antibody formation in immunocompetent GAA-knockout mice for 18 wk, predicting that liver-specific expression of human GAA with the AAV vector would induce immune tolerance and enhance the efficacy of ERT. In this study, a very low number of AAV vector particles was administered before initiation of ERT, to prevent the antibody response in GAA-knockout mice. A robust antibody response was provoked in naive GAA-knockout mice by 6 wk after a challenge with human GAA and Freund's adjuvant; in contrast, administration of the AAV vector before the GAA challenge prevented the antibody response. Most compellingly, the antibody response was prevented by AAV vector administration during the 12 wk of ERT, and the efficacy of ERT was thereby enhanced. Thus, AAV vector-mediated gene therapy induced a tolerance to introduced GAA, and this strategy could enhance the efficacy of ERT in CRIM-negative patients with Pompe disease and in patients with other lysosomal storage diseases.  相似文献   

14.

Background

Most patients with hypertrophic cardiomyopathy (HCM) have asymmetric septal hypertrophy and among them, 25% present dynamic subaortic obstruction. Apical HCM is unusual and mid-ventricular HCM is the most infrequent presentation, but both variants may be associated to an apical aneurysm. An even more rare presentation is the coexistece mid-ventricular and apical HCM. This case is a combination of obstructive HCM with mid-ventricular HCM and an apical aneurysm, which to date, has not been reported in the literature.

Case presentation

The patient is a 49 year-old lady who presents a combination of septal asymmetric hypertrophic cardiomyopathy (HCM) and midventricular HCM, a subaortic gradient of 65 mm Hg and a midventricular gradient of 20 mm Hg, plus an apical aneurysm. Her clinical presentation was an acute myocardial infarction in June 2005. One month after hospital discharge, the electrocardiogram (ECG) showed a right bundle branch block (RBBB) with no Q waves or ST segment elevation. Coronary angiography revealed normal coronary arteries, left ventricular hypertrophy and an apical aneurysm.

Conclusion

This case is a rare example of an asymptomatic patient with subaortic and mid-ventricular hypertrophic cardiomyopathy, who presents a myocardial infarction and normal coronary arteries, and during the course of her disease develops an apical aneurysm.  相似文献   

15.
Pompe disease (glycogen storage disease type II) is a glycogen storage disease caused by a deficiency of the lysosomal enzyme, acid maltase/acid alpha-1,4 glucosidase (GAA). Deficiency of the enzyme leads primarily to intra-lysosomal glycogen accumulation, primarily in cardiac and skeletal muscles, due to the inability of converting glycogen into glucose. Enzyme replacement therapy (ERT) has been applied to replace the deficient enzyme and to restore the lost function. However, enhancing the enzyme activity to the muscle following ERT is relatively insufficient. In order to enhance GAA activity into the muscle in Pompe disease, efficacy of hyaluronidase (hyase) was examined in the heart, quadriceps, diaphragm, kidney, and brain of mouse model of Pompe disease. Administration of hyase 3000 U/mouse (intravenous) i.v. or i.p. (intraperitoneal) and 10 min later recombinant human GAA (rhGAA) 20 mg/kg i.v. showed more GAA activity in hyase i.p. injected mice compared to those mice injected with hyase via i.v. Injection of low dose of hyase (3000 U/mouse) or high dose of hyase (10,000 U/mouse) i.p. and 20 min or 60 min later 20 mg/kg rhGAA i.v. increased GAA activity into the heart, diaphragm, kidney, and quadriceps compared to hyase untreated mice. These studies suggest that hyase enhances penetration of enzyme into the tissues including muscle during ERT and therefore hyase pretreatment may be important in treating Pompe disease.  相似文献   

16.

Background

Gaucher disease (GD) is due to deficiency of the glucocerebrosidase enzyme. It is panethnic, but its presentation reveals ethnicity-specific characteristics.

Methods

We evaluated the distribution, and clinical and genetic characteristics of GD patients in the Iberian Peninsula (IP). We analysed geographical distribution, demographic, genetic and clinical data, age at diagnosis, type, and years of therapy in 436 GD patients from the IP.

Results

The prevalence of GD was 1/149,000 inhabitants; 88.3% were type 1, 6.7% type 2, and 5.0% type 3. The mean age at diagnosis in type 1 was 28.7 years. A total of 72.7% were classified as having mild forms, 25.5% moderate, and 1.7% severe. Anemia and thrombocytopenia were present in 56% and 55%, respectively. Bone disease and hepatomegaly were reported in 62% and 68%, respectively, and were more likely in asplenic than in non-splenectomized patients. Sixty-nine mutant alleles were identified, and five mutations accounted for 75% of the GBA alleles. Several patients described in our series had interesting phenotypes. A total of 58.7% of patients had received enzyme replacement therapy and 12.6% were treated with miglustat.

Conclusions

A broad spectrum of GBA mutations is present in the IP, with 98.2% of type 1 GD being mild and 23.0% never treated. These data highlight genetic and phenotypic heterogeneities among geographic populations.  相似文献   

17.

Background

Due partly to physicians’ unawareness, many adults with Pompe disease are diagnosed with great delay. Besides, it is not well known which factors influence the rate of disease progression, and thus disease outcome. We delineated the specific clinical features of Pompe disease in adults, and mapped out the distribution and severity of muscle weakness, and the sequence of involvement of the individual muscle groups. Furthermore, we defined the natural disease course and identified prognostic factors for disease progression.

Methods

We conducted a single-center, prospective, observational study. Muscle strength (manual muscle testing, and hand-held dynamometry), muscle function (quick motor function test), and pulmonary function (forced vital capacity in sitting and supine positions) were assessed every 3–6 months and analyzed using repeated-measures ANOVA.

Results

Between October 2004 and August 2009, 94 patients aged between 25 and 75 years were included in the study. Although skeletal muscle weakness was typically distributed in a limb-girdle pattern, many patients had unfamiliar features such as ptosis (23%), bulbar weakness (28%), and scapular winging (33%). During follow-up (average 1.6 years, range 0.5-4.2 years), skeletal muscle strength deteriorated significantly (mean declines of ?1.3% point/year for manual muscle testing and of ?2.6% points/year for hand-held dynamometry; both p<0.001). Longer disease duration (>15 years) and pulmonary involvement (forced vital capacity in sitting position <80%) at study entry predicted faster decline. On average, forced vital capacity in supine position deteriorated by 1.3% points per year (p=0.02). Decline in pulmonary function was consistent across subgroups. Ten percent of patients declined unexpectedly fast.

Conclusions

Recognizing patterns of common and less familiar characteristics in adults with Pompe disease facilitates timely diagnosis. Longer disease duration and reduced pulmonary function stand out as predictors of rapid disease progression, and aid in deciding whether to initiate enzyme replacement therapy, or when.
  相似文献   

18.

Background

About 2-7% of familial cardiomyopathy cases are caused by a mutation in the gene encoding cardiac troponin I (TNNI3). The related clinical phenotype is usually severe with early onset. Here we report on all currently known mutations in the Dutch population and compared these with those described in literature.

Methods

TheTNNI3 gene was screened for mutations in all coding exons and flanking intronic sequences in a large cohort of cardiomyopathy patients. All Dutch index cases carrying a TNNI3 mutation that are described in this study underwent extensive cardiological evaluation and were listed by their postal codes.

Results

In 30 families, 14 different mutations were identified. Three TNNI3 mutations were found relatively frequently in both familial and non-familial cases of hypertrophic cardiomyopathy (HCM) or restrictive cardiomyopathy (RCM). Haplotype analysis showed that p.Arg145Trp and p.Ser166Phe are founder mutations in the Netherlands, while p.Glu209Ala is not. The majority of Dutch TNNI3 mutations were associated with a HCM phenotype. Mean age at diagnosis was 36.5 years. Mutations causing RCM occurred less frequently, but were identified in very young children with a poor prognosis.

Conclusion

In line with previously published data, we found TNNI3 mutations to be rare and associated with early onset and severe clinical presentation.  相似文献   

19.

Background

Mutations in SCO2 cause cytochrome c oxidase deficiency (COX) and a fatal infantile cardioencephalomyopathy. SCO2 encodes a protein involved in COX copper metabolism; supplementation with copper salts rescues the defect in patients?? cells. Bezafibrate (BZF), an approved hypolipidemic agent, ameliorates the COX deficiency in mice with mutations in COX10, another COX-assembly gene.

Methods

We have investigated the effect of BZF and copper in cells with SCO2 mutations using spectrophotometric methods to analyse respiratory chain activities and a luciferase assay to measure ATP production..

Results

Individual mitochondrial enzymes displayed different responses to BZF. COX activity increased by about 40% above basal levels (both in controls and patients), with SCO2 cells reaching 75-80% COX activity compared to untreated controls. The increase in COX was paralleled by an increase in ATP production. The effect was dose-dependent: it was negligible with 100 ??M BZF, and peaked at 400 ??M BZF. Higher BZF concentrations were associated with a relative decline of COX activity, indicating that the therapeutic range of this drug is very narrow. Combined treatment with 100 ??M CuCl2 and 200 ??M BZF (which are only marginally effective when administered individually) achieved complete rescue of COX activity in SCO2 cells.

Conclusions

These data are crucial to design therapeutic trials for this otherwise fatal disorder. The additive effect of copper and BZF will allow to employ lower doses of each drug and to reduce their potential toxic effects. The exact mechanism of action of BZF remains to be determined.  相似文献   

20.
Pompe disease is a lysosomal storage disorder caused by deficiency in the enzyme acid α-glucosidase (GAA). Pompe disease is characterized by the accumulation of glycogen, predominantly in muscle tissue, leading to progressive muscle weakness, loss of motor, respiratory, and, in the infantile-onset form, cardiac function. Disease progression is highly variable depending on phenotype, but premature death due to respiratory complications occurs in most patients. Beginning in 2006, approved alglucosidase alfa enzyme replacement therapies [recombinant human (rh) GAA] have been available to treat Pompe patients. Treatment of classic infantile-onset patients, who manifest the severest form of the disease, with alglucosidase alfa (Myozyme?) has led to extended survival and an evolving understanding of the pathophysiology and course of the disease. Moreover, such treatment has brought to light the role of the immune response in abrogating the efficacy of rhGAA in classic infantile-onset patients with severe genetic mutations. Thus, optimization of treatment for such patients includes development and utilization of strategies to prevent or eliminate immune responses, including modulating the immune system (prophylactic and therapeutic immune tolerance induction regimens) and engineering the enzyme to be less immunogenic and more effective. Future research is also critical for evaluating and mitigating novel disease-associated pathologies uncovered by prolonged survival of infantile-onset patients including development of novel therapeutics, and for protein design strategies to increase delivery of enzyme replacement therapy to critical target tissues. Such efforts would be greatly bolstered by further development of predictive animal models and biomarkers to facilitate clinical trials and patient management. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号