首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral encephalitis is a major cause of morbidity and mortality worldwide, yet there is no proven efficacious therapy for most viral infections of the central nervous system (CNS). Many of the viruses that cause encephalitis induce apoptosis and activate c-Jun N-terminal kinase (JNK) following infection. We have previously shown that reovirus infection of epithelial cell lines activates JNK-dependent apoptosis. We now show that reovirus infection resulted in activation of JNK and caspase-3 in the CNS. Treatment of reovirus-infected mice with a cell-permeating peptide that competitively inhibits JNK activity resulted in significantly prolonged survival of intracerebrally infected mice following an otherwise lethal challenge with T3D (100 x 50% lethal dose). Protection correlated with reduced CNS injury, reduced neuronal apoptosis, and reduced c-Jun activation without altering the viral titer or viral antigen distribution. Given the efficacy of the inhibitor in protecting mice from viral encephalitis, JNK inhibition represents a promising and novel treatment strategy for viral encephalitis.  相似文献   

2.
Viral myocarditis is an important cause of human morbidity and mortality for which reliable and effective therapy is lacking. Using reovirus strain 8B infection of neonatal mice, a well-characterized experimental model of direct virus-induced myocarditis, we now demonstrate that myocardial injury results from apoptosis. Proteases play a critical role as effectors of apoptosis. The activity of the cysteine protease calpain increases in reovirus-infected myocardiocytes and can be inhibited by the dipeptide alpha-ketoamide calpain inhibitor Z-Leu-aminobutyric acid-CONH(CH(2))3-morpholine (CX295). Treatment of reovirus-infected neonatal mice with CX295 protects them against reovirus myocarditis as documented by (i) a dramatic reduction in histopathologic evidence of myocardial injury, (ii) complete inhibition of apoptotic myocardial cell death as identified by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, (iii) a reduction in serum creatine phosphokinase, and (iv) improved weight gain. These findings are the first evidence for the importance of a calpain-associated pathway of apoptotic cell death in viral disease. Inhibition of apoptotic signaling pathways may be an effective strategy for the treatment of viral disease in general and viral myocarditis in particular.  相似文献   

3.
Reovirus serotype 3 strains infect neurons within specific regions of the neonatal mouse brain and produce a lethal meningoencephalitis. Viral replication and pathology colocalize and have a predilection for the cortex, hippocampus, and thalamus. We have shown previously that infection of cultured fibroblasts and epithelial cells with reovirus type 3 Dearing (T3D) and other type 3 reovirus strains results in apoptotic cell death, suggesting that apoptosis is a mechanism of cell death in vivo. We now report that T3D induces apoptosis in infected mouse brain tissue. To determine whether reovirus induces apoptosis in neural tissues, newborn mice were inoculated intracerebrally with T3D, and at various times after inoculation, brain tissue was assayed for viral antigen by immunostaining and apoptosis was identified by DNA oligonucleosomal laddering and in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Cells were also stained with cresyl violet to detect morphological changes characteristic of apoptosis, including chromatin condensation and cell shrinkage. DNA laddering was detected in T3D- but not in mock-infected brain tissue. Apoptotic cells were restricted to the same regions of the brain in which infected cells and tissue damage were observed. These findings suggest that virus-induced apoptosis is a mechanism of cell death, tissue injury, and mortality in reovirus-infected mice. The correlation between apoptosis and pathogenesis in vivo identifies apoptosis as a potential target for molecular and pharmacological strategies designed to curtail or prevent diseases resulting from induction of this cell death pathway.  相似文献   

4.
The mechanisms by which viruses kill susceptible cells in target organs and ultimately produce disease in the infected host remain poorly understood. Dependent upon the site of inoculation and strain of virus, experimental infection of neonatal mice with reoviruses can induce fatal encephalitis or myocarditis. Reovirus-induced apoptosis is a major mechanism of tissue injury, leading to disease development in both the brain and heart. In cultured cells, differences in the capacity of reovirus strains to induce apoptosis are determined by the S1 gene segment, which also plays a major role as a determinant of viral pathogenesis in both the heart and the central nervous system (CNS) in vivo. The S1 gene is bicistronic, encoding both the viral attachment protein sigma-1 and the nonstructural protein sigma-1-small (sigma1s). Although sigma1s is dispensable for viral replication in vitro, we wished to investigate the expression of sigma1s in the infected heart and brain and its potential role in reovirus pathogenesis in vivo. Two-day-old mice were inoculated intramuscularly or intracerebrally with either sigma1s(-) or sigma1s(+) reovirus strains. While viral replication in target organs did not differ between sigma1s(-) and sigma1s(+) viral strains, virus-induced caspase-3 activation and resultant histological tissue injury in both the heart and brain were significantly reduced in sigma1s(-) reovirus-infected animals. These results demonstrate that sigma1s is a determinant of the magnitude and extent of reovirus-induced apoptosis in both the heart and CNS and thereby contributes to reovirus pathogenesis and virulence.  相似文献   

5.
6.
7.
Reovirus infection is a well-characterized experimental system for the study of viral pathogenesis and antiviral immunity within the central nervous system (CNS). We have previously shown that c-Jun N-terminal kinase (JNK) and the Fas death receptor each play a role in neuronal apoptosis occurring in reovirus-infected brains. Death-associated protein 6 (Daxx) is a cellular protein that mechanistically links Fas signaling to JNK signaling in several models of apoptosis. In the present study, we demonstrate that Daxx is upregulated in reovirus-infected brain tissue through a type I interferon-mediated mechanism. Daxx upregulation is limited to brain regions that undergo reovirus-induced apoptosis and occurs in the cytoplasm and nucleus of neurons. Cytoplasmic Daxx is present in Fas-expressing cells during reovirus encephalitis, suggesting a role for Daxx in Fas-mediated apoptosis following reovirus infection. Further, in vitro expression of a dominant negative form of Daxx (DN-Daxx), which binds to Fas but which does not transmit downstream signaling, inhibits apoptosis of reovirus-infected cells. In contrast, in vitro depletion of Daxx results in increased expression of caspase 3 and apoptosis, suggesting that Daxx plays an antiapoptotic role in the nucleus. Overall, these data imply a regulatory role for Daxx in reovirus-induced apoptosis, depending on its location in the nucleus or cytoplasm.  相似文献   

8.
9.
The cytopathic effect evidenced by cells infected with avian reovirus S1133 suggests that this virus may induce apoptosis in primary cultures of chicken embryo fibroblasts. In this report we present evidence that avian reovirus infection of cultured cells causes activation of the intracellular apoptotic program and that this activation takes place during an early stage of the viral life cycle. The ability of avian reoviruses to induce apoptosis is not restricted to a particular virus strain or to a specific cell type, since different avian reovirus isolates were able to induce apoptosis in several avian and mammalian cell lines. Apoptosis was also provoked in ribavirin-treated avian reovirus-infected cells and in cells infected with UV-irradiated reovirions, indicating that viral mRNA synthesis and subsequent steps in viral replication are not needed for apoptosis induction in avian reovirus-infected cells and that the number of inoculated virus particles, not their infectivity, is the critical factor for apoptosis induction by avian reovirus. Our finding that apoptosis is no longer induced when intracellular viral uncoating is blocked indicates that intraendosomal virion disassembly is required for apoptosis induction and that attachment and uptake of parental reovirions are not sufficient to cause apoptosis. Taken together, our results suggest that apoptosis is triggered from within the infected cell by viral products generated after intraendosomal uncoating of parental reovirions.  相似文献   

10.
Apoptosis plays a major role in the cytopathic effect induced by reovirus following infection of cultured cells and newborn mice. Strain-specific differences in the capacity of reovirus to induce apoptosis segregate with the S1 and M2 gene segments, which encode attachment protein σ1 and membrane penetration protein μ1, respectively. Virus strains that bind to both junctional adhesion molecule-A (JAM-A) and sialic acid are the most potent inducers of apoptosis. In addition to receptor binding, events in reovirus replication that occur during or after viral disassembly but prior to initiation of viral RNA synthesis also are required for reovirus-induced apoptosis. To determine whether reovirus infection initiated in the absence of JAM-A and sialic acid results in apoptosis, Chinese hamster ovary (CHO) cells engineered to express Fc receptors were infected with reovirus using antibodies directed against viral outer-capsid proteins. Fc-mediated infection of CHO cells induced apoptosis in a σ1-independent manner. Apoptosis following this uptake mechanism requires acid-dependent proteolytic disassembly, since treatment of cells with the weak base ammonium chloride diminished the apoptotic response. Analysis of T1L × T3D reassortant viruses revealed that the μ1-encoding M2 gene segment is the only viral determinant of the apoptosis-inducing capacity of reovirus when infection is initiated via Fc receptors. Additionally, a temperature-sensitive, membrane penetration-defective M2 mutant, tsA279.64, is an inefficient inducer of apoptosis. These data suggest that signaling pathways activated by binding of σ1 to JAM-A and sialic acid are dispensable for reovirus-mediated apoptosis and that the μ1 protein plays an essential role in stimulating proapoptotic signaling.  相似文献   

11.
Infection of neonatal mice with reovirus T3 Dearing (T3D), the prototypic neurotropic reovirus, causes fatal encephalitis associated with neuronal injury and virus-induced apoptosis throughout the brain. T3D variant K (VarK) is an antigenic variant that has a nearly 1 million-fold reduction in neurovirulence following intracerebral (i.c.) inoculation compared to T3D and a restricted pattern of central nervous system injury with damage limited to the hippocampus, sparing other brain regions. We wished to determine whether the restricted pattern of VarK-induced injury was due to a reduced capacity to replicate in or injure cortical, as opposed to hippocampal, tissue. We found that following i.c. inoculation, VarK grew to similar titers as T3D in the hippocampus but had significantly lower titers in the cortex. Both viruses grew to identical titers and infected the same percentage of cells in mouse primary hippocampal cultures (MHC). In mouse primary cortical cultures (MCC) both the number of infected cells and the viral yield per infected cell were significantly lower for VarK than T3D. VarK-induced apoptosis was limited to the hippocampus in vivo, and in vitro both viruses induced apoptosis equally in MHC but VarK induced significantly less apoptosis than T3D in MCC. Growth of T3D in MCC was reduced to levels comparable to those of VarK following treatment of MCC with caspase inhibitors. Conversely, induction of apoptosis in VarK-infected MCC with fatty acid synthase-activating antibody significantly enhanced viral yield. These results suggest that the decreased neurovirulence of VarK may be due to its failure to efficiently induce apoptosis in cortical neurons.  相似文献   

12.
13.
The chemokine CXCL10 is expressed within the CNS in response to intracerebral infection with mouse hepatitis virus (MHV). Blocking CXCL10 signaling results in increased mortality accompanied by reduced T cell infiltration and increased viral titers within the brain suggesting that CXCL10 functions in host defense by attracting T cells into the CNS. The present study was undertaken to extend our understanding of the functional role of CXCL10 in response to MHV infection given that CXCL10 signaling has been implicated in coordinating both effector T cell generation and trafficking. We show that MHV infection of CXCL10(+/+) or CXCL10(-/-) mice results in comparable levels of T cell activation and similar numbers of virus-specific CD4+ and CD8+ T cells. Subsequent analysis revealed no differences in T cell proliferation, IFN-gamma secretion by virus-specific T cells, or CD8+ T cell cytolytic activity. Analysis of chemokine receptor expression on CD4+ and CD8+ T cells obtained from MHV-immunized CXCL10(+/+) and CXCL10(-/-) mice revealed comparable levels of CXCR3 and CCR5, which are capable of responding to ligands CXCL10 and CCL5, respectively. Adoptive transfer of splenocytes acquired from MHV-immunized CXCL10(-/-) mice into MHV-infected RAG1(-/-) mice resulted in T cell infiltration into the CNS, reduced viral burden, and demyelination comparable to RAG1(-/-) recipients of immune CXCL10(+/+) splenocytes. Collectively, these data imply that CXCL10 functions primarily as a T cell chemoattractant and does not significantly influence T cell effector response following MHV infection.  相似文献   

14.
Apoptosis is a type of controlled cell death that is essential for development and tissue homeostasis. It also serves as a robust host response against infection by many viruses. The capacity of neurotropic viruses to induce apoptosis strongly correlates with virulence. However, the precise function of apoptosis in viral infection is not well understood. Reovirus is a neurotropic virus that induces apoptosis in a variety of cell types, including central nervous system neurons, leading to fatal encephalitis in newborn mice. To determine the effect of apoptosis on reovirus replication in the host, we generated two otherwise isogenic viruses that differ in a single amino acid in viral capsid protein μ1 that segregates with apoptotic capacity. Apoptosis-proficient and apoptosis-deficient viruses were compared for replication, dissemination, tropism, and tissue injury in newborn mice and for the capacity to spread to uninfected littermates. Our results indicate that apoptotic capacity enhances reovirus replication in the brain and consequent neurovirulence but reduces transmission efficiency. The replication advantage of the apoptosis-proficient strain is limited to the brain and correlates with enhanced infectivity of neurons. These studies reveal a new cell type-specific determinant of reovirus virulence.  相似文献   

15.
16.
Intracranial infection of C57BL/6 mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by a demyelinating disease similar in pathology to the human disease multiple sclerosis (MS). CD4(+) T cells are important in amplifying demyelination by attracting macrophages into the central nervous system (CNS) following viral infection; however, the mechanisms governing the entry of these cells into the CNS are poorly understood. The role of chemokine receptor CCR5 in trafficking of virus-specific CD4(+) T cells into the CNS of MHV-infected mice was investigated. CD4(+) T cells from immunized CCR5(+/+) and CCR5(-/-) mice were expanded in the presence of the immunodominant epitope present in the MHV transmembrane (M) protein encompassing amino acids 133 to 147 (M133-147). Adoptive transfer of CCR5(+/+)-derived CD4(+) T cells to MHV-infected RAG1(-/-) mice resulted in CD4(+)-T-cell entry into the CNS and clearance of virus from the brain. These mice also displayed robust demyelination correlating with macrophage accumulation within the CNS. Conversely, CD4(+) T cells from CCR5(-/-) mice displayed an impaired ability to traffic into the CNS of MHV-infected RAG1(-/-) recipients, which correlated with increased viral titers, diminished macrophage accumulation, and limited demyelination. Analysis of chemokine receptor mRNA expression by M133-147-expanded CCR5(-/-)-derived CD4(+) T cells revealed reduced expression of CCR1, CCR2, and CXCR3, indicating that CCR5 signaling is important in increased expression of these receptors, which aid in trafficking of CD4(+) T cells into the CNS. Collectively these results demonstrate that CCR5 signaling is important to migration of CD4(+) T cells to the CNS following MHV infection.  相似文献   

17.
18.
19.
Viral infections of the central nervous system (CNS) are important causes of worldwide morbidity and mortality, and understanding how viruses perturb host cell signaling pathways will facilitate identification of novel antiviral therapies. We now show that reovirus infection activates transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling in a murine model of encephalitis in vivo. TGF-β receptor I (TGF-βRI) expression is increased and its downstream signaling factor, SMAD3, is activated in the brains of reovirus-infected mice. TGF-β signaling is neuroprotective, as inhibition with a TGF-βRI inhibitor increases death of infected neurons. Similarly, BMP receptor I expression is increased and its downstream signaling factor, SMAD1, is activated in reovirus-infected neurons in the brains of infected mice in vivo. Activated SMAD1 and SMAD3 were both detected in regions of brain infected by reovirus, but activated SMAD1 was found predominantly in uninfected neurons in close proximity to infected neurons. Treatment of reovirus-infected primary mouse cortical neurons with a BMP agonist reduced apoptosis. These data provide the first evidence for the activation of TGF-β and BMP signaling pathways following neurotropic viral infection and suggest that these signaling pathways normally function as part of the host''s protective innate immune response against CNS viral infection.The transforming growth factor β (TGF-β) superfamily of growth factors regulates multiple cellular functions including inflammation, cell growth, differentiation, migration, and apoptosis (33). In excess of 30 genes represent the TGF-β superfamily in mammals including three TGF-β genes, four activin β-chains (nodal), 10 bone morphogenetic proteins (BMPs), and 11 growth and differentiation factors. The receptors for the TGF-β superfamily of ligands form the only known transmembrane Ser-Thr kinases (33). The signaling pathways are similar for all ligands. Briefly, a TGF-β ligand binds to and brings into proximity a TGF-β receptor type I (TGF-βRI) and a TGF-β receptor type II (TGF-βRII), assembling a heterotetrameric complex (45). The constitutively active type II receptor kinase phosphorylates the type I receptor at several serine and threonine residues in a glycine- and serine-rich juxtamembrane domain, resulting in the recruitment and phosphorylation at two C-terminal serine residues in the MH2 domain of the receptor-regulated SMADs (R-SMAD): SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8 (33). Phosphorylated R-SMAD proteins form complexes with the common mediator SMAD4, translocate to the nucleus, and alter gene expression. Each type I receptor typically binds a specific TGF-β superfamily ligand and activates a subset of R-SMADs. The TGF-β-activin-nodal ligands signal through specific type I receptors to activate SMAD2 or SMAD3, and the BMP-growth and differentiation factor ligands signal through specific type I receptors and activate SMAD1, SMAD5, or SMAD8 (33).Members of the TGF-β superfamily modulate innate immune responses to multiple infections by controlling inflammation and repair after injury (25). In addition, TGF-β signaling controls apoptosis and viral replication in several viral systems including polyomaviruses such as BK virus (1) and JC virus (16, 30), human immunodeficiency virus (16), Epstein-Barr virus reactivation (17), and hepatitis C virus (26). In the case of hepatitis C virus, the synergistic activation of BMP signaling and alpha interferon suppresses viral replication (35). In noninfectious models of disease, previous studies have shown that modulating TGF-β signaling is protective in a murine model of Alzheimer''s disease (36), and augmenting BMP signal activation can protect cells and neurons following oxidative stress (15), stroke (40), or other cellular injuries (3, 44). However, to our knowledge, the roles of TGF-β and BMP signaling have not been studied following acute viral infection in the central nervous system (CNS).Reovirus infection is a well-characterized experimental system utilized to study viral pathogenesis. Serotype 3 strains of reovirus (Abney [T3A] and Dearing [T3D]) induce apoptosis in vitro and in vivo by activating caspase-3-dependent cell death (4, 28). Reovirus-induced encephalitis in vivo is largely a result of virus-induced apoptosis with little associated infiltrate of inflammatory cells. Caspase 3 activation is initiated by reovirus-induced activation of death receptors and is augmented by mitochondrial apoptotic signaling (6, 24, 31). Previous studies have also demonstrated that virus-induced signaling events affect cell survival and cell death. Reovirus-induced selective activation of mitogen-activated protein kinases such as c-Jun N-terminal kinase (JNK) are vital to apoptosis in vitro and in a murine model of reovirus-induced encephalitis (2, 9). Similarly, the activation and subsequent inhibition of NF-κB signaling are important determinants of apoptosis (5, 7, 10). These pathways are likely to act in part by regulating critical components of either death receptor or mitochondrial apoptotic signaling. For example, reovirus-induced inhibition of NF-κB activation decreases cellular levels of c-FLIP, a caspase 8 inhibitor, and inhibition of JNK signaling decreases mitochondrial release of proapoptotic proteins cytochrome c and SMAC (5, 8). While many of these signaling pathways modulate apoptosis, the reovirus model of pathogenesis has been utilized to understand the interferon response to viral infection in cell culture, in myocardial cells, and in the CNS as well (18, 22, 34). Understanding the cellular response to viral infection will lead to the identification of new targets for antiviral therapy.Studies of neuroinvasive viral infections including those with Sindbis virus, West Nile virus, herpes simplex virus, and cytomegalovirus have shown that apoptosis is an important mechanism of neuronal cell death (11, 20, 27, 32). In many cases of neuroinvasive viral infection, exemplified by West Nile virus, viremia has ended by the time that the patient presents with acute symptoms; yet, ongoing virus-induced injury in the CNS results in significant morbidity and mortality (13, 21). There are currently no proven effective therapies for acute CNS viral infections other than acyclovir therapy for herpes simplex virus encephalitis, and even with optimal treatment of herpes simplex virus encephalitis, morbidity and mortality remain significant. The goal of our studies is to utilize the reovirus system to identify potential novel therapeutic targets that will enhance neuroprotection following CNS viral infection.We show here for the first time that TGF-β and BMP are activated in response to viral infection in a model of murine viral encephalitis in vivo. We extend these findings by showing that virus-activated BMP signaling protects mouse cortical neurons from cell death.  相似文献   

20.
West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus that has become a significant global cause of viral encephalitis. To examine the mechanisms of WNV-induced neuronal death and the importance of apoptosis in pathogenesis, we evaluated the role of a key apoptotic regulator, caspase 3. WNV infection induced caspase 3 activation and apoptosis in the brains of wild-type mice. Notably, congenic caspase 3(-/-) mice were more resistant to lethal WNV infection, although there were no significant differences in the tissue viral burdens or the kinetics of viral spread. Instead, decreased neuronal death was observed in the cerebral cortices, brain stems, and cerebella of caspase 3(-/-) mice. Analogously, primary central nervous system (CNS)-derived neurons demonstrated caspase 3 activation and apoptosis after WNV infection, and treatment with caspase inhibitors or a genetic deficiency in caspase 3 significantly decreased virus-induced death. These studies establish that caspase 3-dependent apoptosis contributes to the pathogenesis of lethal WNV encephalitis and suggest possible novel therapeutic targets to restrict CNS injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号