首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunity to poliomyelitis is largely dependent on humoral neutralizing antibodies, both after natural (wild virus or vaccine) infection and after inactivated poliovirus vaccine inoculation. Although the production of local secretory immunoglobulin A (IgA) antibody in the gut mucosa may play a major role in protection, most of information about the antigenic determinants involved in neutralization of polioviruses derives from studies conducted with humoral monoclonal antibodies (MAbs) generated from parenterally immunized mice. To investigate the specificity of the mucosal immune response to the virus, we have produced a library of IgA MAbs directed at Sabin type 1 poliovirus by oral immunization of mice with live virus in combination with cholera toxin. The epitopes recognized by 13 neutralizing MAbs were characterized by generating neutralization-escape virus mutants. Cross-neutralization analysis of viral mutants with MAbs allowed these epitopes to be divided into four groups of reactivity. To determine the epitope specificity of MAbs, virus variants were sequenced and the mutations responsible for resistance to the antibodies were located. Eight neutralizing MAbs were found to be directed at neutralization site N-AgIII in capsid protein VP3; four more MAbs recognized site N-AgII in VP1 or VP2. One IgA MAb selected a virus variant which presented a unique mutation at amino acid 138 in VP2, not previously described. This site appears to be partially related with site N-AgII and is located in a loop region facing the VP2 N-Ag-II loop around residue 164. Only 2 of 13 MAbs proved able to neutralize the wild-type Mahoney strain of poliovirus. The IgA antibodies studied were found to be produced in the dimeric form needed for recognition by the polyimmunoglobulin receptor mediating secretory antibody transport at the mucosal level.  相似文献   

2.
Analysis of neutralizing epitopes on foot-and-mouth disease virus.   总被引:18,自引:11,他引:7       下载免费PDF全文
For the investigation of the antigenic determinant structure of foot-and-mouth disease virus (FMDV), neutralizing monoclonal antibodies (MAbs) against complete virus were characterized by Western blot (immunoblot), enzyme immunoassay, and competition experiments with a synthetic peptide, isolated coat protein VP1, and viral particles as antigens. Two of the four MAbs reacted with each of these antigens, while the other two MAbs recognized only complete viral particles and reacted only very poorly with the peptide. The four MAbs showed different neutralization patterns with a panel of 11 different FMDV strains. cDNA-derived VP1 protein sequences of the different strains were compared to find correlations between the primary structure of the protein and the ability of virus to be neutralized. Based on this analysis, it appears that the first two MAbs recognized overlapping sequential epitopes in the known antigenic site represented by the peptide, whereas the two other MAbs recognized conformational epitopes. These conclusions were supported and extended by structural analyses of FMDV mutants resistant to neutralization by an MAb specific for a conformational epitope. These results demonstrate that no amino acid exchanges had occurred in the primary antigenic site of VP1 but instead in the other coat proteins VP2 and VP3, which by themselves do not induce neutralizing antibodies.  相似文献   

3.
Infections caused by human parvovirus B19 are known to be controlled mainly by neutralizing antibodies. To analyze the immune reaction against parvovirus B19 proteins, four cell lines secreting human immunoglobulin G monoclonal antibodies (MAbs) were generated from two healthy donors and one human immunodeficiency virus type 1-seropositive individual with high serum titers against parvovirus. One MAb is specific for nonstructural protein NS1 (MAb 1424), two MAbs are specific for the unique region of minor capsid protein VP1 (MAbs 1418-1 and 1418-16), and one MAb is directed to major capsid protein VP2 (MAb 860-55D). Two MAbs, 1418-1 and 1418-16, which were generated from the same individual have identity in the cDNA sequences encoding the variable domains, with the exception of four base pairs resulting in only one amino acid change in the light chain. The NS1- and VP1-specific MAbs interact with linear epitopes, whereas the recognized epitope in VP2 is conformational. The MAbs specific for the structural proteins display strong virus-neutralizing activity. The VP1- and VP2-specific MAbs have the capacity to neutralize 50% of infectious parvovirus B19 in vitro at 0.08 and 0.73 μg/ml, respectively, demonstrating the importance of such antibodies in the clearance of B19 viremia. The NS1-specific MAb mediated weak neutralizing activity and required 47.7 μg/ml for 50% neutralization. The human MAbs with potent neutralizing activity could be used for immunotherapy of chronically B19 virus-infected individuals and acutely infected pregnant women. Furthermore, the knowledge gained regarding epitopes which induce strongly neutralizing antibodies may be important for vaccine development.  相似文献   

4.
An immunochemical analysis of the hemagglutinin (VP4) of the simian rotavirus SA11 was performed to better understand the structure and function of this molecule. Following immunization of mice with double-shelled virus particles and VP4-enriched fractions from CsCl gradients, a battery of anti-SA11 hybridomas was generated. A total of 13 clones secreting high levels of anti-VP4 monoclonal antibody (MAb) was characterized and compared with two cross-reactive anti-VP4 MAbs generated against heterologous rhesus (RRV) and porcine (OSU) rotavirus strains. These cross-reactive MAbs effectively neutralized SA11 infectivity in vitro. The epitopes recognized by these 15 MAbs were grouped into six antigenic sites on the SA11 hemagglutinin. These sites were identified following analysis of the MAbs by using a simple competitive binding enzyme-linked immunosorbent assay (ELISA) and biological assays. Three of the antigenic sites were involved in neutralization of virus infectivity in vitro. All the MAbs with neutralization activity and two nonneutralizing MAbs were able to inhibit viral hemagglutination of human erythrocytes. Competitive binding ELISA data showed a positive cooperative binding effect with some pairs of the anti-VP4 MAbs, apparently due to a conformational change induced by the binding of the first MAb. Some of the MAbs also bound better to trypsin-treated virus than to non-trypsin-treated virus. A topographic map for VP4 is proposed on the basis of the observed properties of each antigenic site.  相似文献   

5.
M Ciarlet  Y Hoshino    F Liprandi 《Journal of virology》1997,71(11):8213-8220
A panel of single and double neutralization-resistant escape mutants of serotype G11 porcine rotavirus strains A253 and YM, selected with G11 monotype- and serotype-specific neutralizing monoclonal antibodies (MAbs) to VP7, was tested in neutralization assays with hyperimmune sera raised against rotavirus strains of different serotypes. Escape mutants with an amino acid substitution in antigenic region A (amino acids [aa] 87 to 101) resulting in a residue identical or chemically similar to those present at the same positions in serotype G3 strains, at positions 87 for strain A253 and 96 for strain YM, were significantly more sensitive than the parental strains to neutralization with sera against some serotype G3 strains. Also, one YM antigenic variant (YM-5E6.1) acquired reactivity by enzyme-linked immunosorbent assay with MAbs 159, 57/8, and YO-1E2, which react with G3 strains, but not with the serotype G11 parental strain YM. Cross-adsorption studies suggested that the observed cross-neutralization by the G3-specific sera was due to the sera containing antibodies reactive with the parental strain plus antibodies reactive with the epitope(s) on the antigenic variant that mimick the serotype G3 specific one(s). Moreover, antibodies reactive with antigenic region F (aa 235 to 242) of VP7 might also be involved since cross-reactivity to serotype G3 was decreased in double mutants carrying an additional mutation, which creates a potential glycosylation site at position 238. Thus, single point mutations can affect the serotype reactivity of G11 porcine rotavirus strains with both monoclonal and polyclonal antibodies and may explain the origin of rotavirus strains with dual serotype specificity based on sequence divergence of VP7.  相似文献   

6.
Astroviruses are important agents of pediatric gastroenteritis. To better understand astrovirus antigenic structure and the basis of protective immunity, monoclonal antibodies (MAbs) were produced against serotype 1 human astrovirus. Four MAbs were generated. One MAb (8G4) was nonneutralizing but reacted to all seven serotypes of astrovirus by enzyme-linked immunosorbentassay (ELISA) and immunoperoxidase staining of infected cells. Three MAbs were found to have potent neutralizing activity against astrovirus. The first (5B7) was serotype 1 specific, another (7C2) neutralized all seven human astrovirus serotypes, while the third (3B2) neutralized serotypes 1 and 7. Immunoprecipitation of radiolabeled astrovirus proteins from supernatants of astrovirus-infected cells showed that all three neutralizing antibodies reacted with VP29. MAb 5B7 also reacted strongly with VP26. A competition ELISA showed that all three neutralizing antibodies competed with each other for binding to purified astrovirus virions, suggesting that their epitopes were topographically in close proximity. None of the neutralizing MAbs competed with nonneutralizing MAb 8G4. The neutralizing MAbs were used to select antigenic variant astroviruses, which were then studied in neutralization assays. These assays also suggested a close relationship between the respective epitopes. All three neutralizing MAbs were able to prevent attachment of radiolabeled astrovirus particles to human Caco 2 intestinal cell monolayers. Taken together, these data suggest that the astrovirus capsid protein VP29 may be important in viral neutralization, heterotypic immunity, and virus attachment to target cells.  相似文献   

7.
Using three serotypes (four strains) of cultivable porcine rotavirus as immunizing antigens, 10 neutralizing monoclonal antibodies were characterized. One VP4-specific monoclonal antibody directed against porcine rotavirus BEN-144 (serotype G4) neutralized human rotavirus strain ST-3 in addition to the homologous porcine virus. All nine VP7-specific monoclonal antibodies were highly specific for viruses of the same serotype as the immunizing rotavirus strain. One exception was the VP7-specific monoclonal antibody C3/1, which neutralized both serotype G3 and G5 rotaviruses. However, this monoclonal antibody did not neutralize the porcine rotavirus AT/76, also of serotype G3, nor mutants of SA-11 virus (serotype G3) which were selected with monoclonal antibody A10/N3 and are known to have mutations affecting the C antigenic region.  相似文献   

8.
We have exposed 22 independent type 2 poliovirus isolates to human intestinal fluid and purified trypsin. In all cases the virus retained its infectivity, while polyacrylamide gel electrophoresis of viral proteins showed disappearance of the VP1 bands. Concomitantly, the viruses became resistant to antigenic site 1-specific monoclonal antibodies, indicating that the cleavage took place at the antigenic site 1. Sera from persons immunized solely with the inactivated poliovirus vaccine (IPV) neutralized intact type 2 polioviruses more readily than the corresponding trypsin-cleaved virus preparations. The ratio between the neutralization indices for the intact and trypsin-cleaved type 2 polioviruses was not significantly changed by a dose of trivalent oral poliovirus vaccine given to children previously immunized with IPV. These results indicate that while the antigenic site 1 of type 2 poliovirus is immunogenic in humans when IPV is used, the relative role of this antigenic site in human immunity appears to be less critical than that in the case of type 3 polioviruses. Before we obtained these results, only antigenic site 1 had been shown to be immunogenic in type 2 polioviruses.  相似文献   

9.
Major neutralization antigenic sites have been previously mapped by us on VP1, the largest capsid protein of poliovirus type 1. Here we report the first identification of the primary sequence of a neutralization antigenic site on capsid protein VP2. Inspection of the amino acid sequence of VP2 led to the selection and synthesis of a peptide (n = 12) that, after linking to a carrier protein, induced an antiviral neutralizing antibody response in rabbits. The response was augmented by a single subsequent inoculation of intact virus; thus, the peptide was also capable of priming the production of neutralizing antibodies. These antibodies were directed only against the site specified by the synthetic peptide. Although the VP2-specific neutralization antigenic site appears not to be strongly immunogenic in the intact virion, it can nevertheless contribute to neutralization of poliovirus. This observation may be important for the development of peptide vaccines.  相似文献   

10.
Rabies virus antigen-specific human monoclonal antibodies (MAbs) that recognized either viral glycoprotein, ribonucleoprotein, or matrix proteins were generated. Only glycoprotein-specific MAb neutralized a variety of rabies viruses and protected laboratory rodents against lethal rabies virus infection. The determinant recognized by this MAb does not appear to reside in previously defined antigenic sites of the viral glycoprotein.  相似文献   

11.
High resolution two-dimensional PAGE was used to analyse protein variation among serotype 1 poliovirus isolates. Viruses isolated from patients with recent histories of vaccination with live attenuated poliovirus were compared with prototype serotype 1 poliovaccine. The nonvaccine Mahoney and Brunenders strains of serotype 1 poliovirus were also analysed. The overall protein profile was conserved but the structural protein VP3 varied in its net charge among the viruses. Eight out of 14 clinical virus isolates had VP3 with a net basic charge identical to serotype 1 polio vaccine, whereas the remaining clinical isolates had an acidic VP3 similar to the nonvaccine type 1 strains. The altered VP3 mobility correlated with a change in antigenicity as determined by monoclonal antibodies directed to the neutralization site located on VP3. The data clearly illustrated the suitability of two-dimensional PAGE in analysing protein mutations in attenuated vaccine virus excreted by vaccinees.  相似文献   

12.
Most monoclonal antibodies to poliovirus 3 but not poliovirus 1 require a single 12-amino-acid sequence in virion protein VP1 for neutralization (site 1). None of the available monoclonal antibodies requiring this site bound virions after tryptic cleavage of site 1. This result allowed the amount of site 1-specific antibodies to be determined in an antiserum by comparing its reactivity with virus and trypsin-cleaved virus. Antisera to poliovirus 3 Sabin strain (PS3) but not poliovirus 1 Sabin showed site 1 immunodominance, consistent with the frequency of isolation of site 1-specific monoclonal antibodies to these viruses. Cleavage of site 1 prior to immunization dramatically reduced the immunogenicity of this site in PS3. However, the antiserum against trypsin-cleaved PS3 still had a high neutralization titer, demonstrating that sites other than site 1 can elicit a neutralizing response to PS3. Other antisera to PS3 showed significant variability in the response to site 1, indicating that other factors, such as the genetic background of inbred mouse strains, the species immunized, and the immunization protocol, also affect immunodominance. In particular, a serum from a human infant recently immunized with oral trivalent vaccine had little response to site 1.  相似文献   

13.
Antigenicity of rabies virus glycoprotein.   总被引:24,自引:5,他引:19       下载免费PDF全文
  相似文献   

14.
B P Mahon  K Katrak    K H Mills 《Journal of virology》1992,66(12):7012-7020
A panel of poliovirus-specific murine CD4+ T-cell clones has been established from both BALB/c (H-2d) and CBA (H-2k) mice immunized with Sabin vaccine strains of poliovirus serotype 1, 2, or 3. T-cell clones were found to be either serotype specific or cross-reactive between two or all three serotypes. Specificity analysis against purified poliovirus proteins demonstrated that T-cell clones recognized determinants on the surface capsid proteins VP1, VP2, and VP3 and the internal capsid protein VP4. Panels of overlapping synthetic peptides were used to identify eight distinct T-cell epitopes. One type 3-specific T-cell clone recognized an epitope within amino acids 257 and 264 of VP1. Three T-cell epitopes corresponding to residues 14 to 28, 189 to 203, and 196 to 210 were identified on VP3 of poliovirus type 2. The remaining four T-cell epitopes were mapped to an immunodominant region of VP4, encompassed within residues 6 and 35 and recognized by both H-2d and H-2k mice. The epitopes on VP4 were conserved between serotypes, and this may account for the predominantly cross-reactive poliovirus-specific T-cell response observed with polyclonal T-cell populations. In contrast, T-cell clones that recognize epitopes on VP1 or VP3 were largely serotype specific; single or multiple amino acid substitutions were found to be critical for T-cell recognition.  相似文献   

15.
In an earlier report (S.D. Marlin, S.L. Highlander, T.C. Holland, M. Levine, and J.C. Glorioso, J. Virol. 59: 142-153), we described the production and use of complement-dependent virus-neutralizing monoclonal antibodies (MAbs) and MAb-resistant (mar) mutants to identify five antigenic sites (I to V) on herpes simplex virus type 1 glycoprotein B (gB). In the present study, the mechanism of virus neutralization was determined for a MAb specific for site III (B4), the only site recognized by MAbs which exhibited complement-independent virus-neutralizing ability. This antibody had no detectable effect on virus attachment but neutralized viruses after adsorption to cell monolayers. These findings implied that the mechanism of B4 neutralization involved blocking of virus penetration. The remaining antibodies, which recognized sites I, II, and IV, required active complement for effective neutralization. These were further studied for their ability to impede virus infectivity in the absence of complement. Antibodies to sites I (B1 and B3) and IV (B6) slowed the rate at which viruses penetrated cell surfaces, supporting the conclusion that antibody binding to gB can inhibit penetration by a virus. The data suggest that MAbs can interfere with penetration by a virus by binding to a domain within gB which is involved in this process. In another assay of virus infection, MAb B6 significantly reduced plaque development, indicating that antibody binding to gB expressed on infected-cell surfaces can also interfere with the ability of a virus to spread from cell to cell. In contrast to these results, antibodies to site II (B2 and B5) had no effect on virus infectivity; this suggests that they recognized structures which do not play a direct role in the infectious process. To localize regions of gB involved in these phenomena, antibody-binding sites were operationally mapped by radioimmunoprecipitation of a panel of truncated gB molecules produced in transient-expression assays. Residues critical to recognition by antibodies which affect penetration by a virus (sites I, III, and IV) mapped to a region of the molecule (amino acid residues 241 to 441) which is centrally located within the external domain. Antibodies which had no effect on penetration (site II) recognized sequences distal to this region (residues 596 to 737) near the transmembrane domain. The data suggest that these gB-specific MAbs recognize two major antigenic sites which reside in physically distinct components of the external domain of gB.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Anti-idiotypic (anti-Id) antibodies were raised in rabbits against five monoclonal antibodies (MAbs) specific for different antigenic sites on the hemagglutinin (HA) of influenza virus Mem71H-BelN (H3N1) [A/Memphis/1/71 (H3N2) x A/Bel/42 (H1N1)]. Each of the anti-Id sera was directed predominantly towards a unique (private) idiotype of the immunizing MAb, none of the five idiotypes being detectable in pooled BALB/c antisera against Mem71H-BelN virus or on most other anti-HA MAbs tested. Partial idiotypic sharing was observed, however, between certain MAbs, from different mice, having the same or similar epitope specificity for HA. When used as immunogens in BALB/c mice, two of the five anti-Id preparations induced antibodies that reacted with Mem71H-BelN virus and displayed neutralizing activity. Mice of other inbred strains responded similarly, indicating that the response was not genetically restricted by the Igh locus. From their pattern of reactivity with mutants of Mem71H-BelN virus with known single amino acid substitutions in the HA molecule, the antiviral antibodies elicited by anti-Id antibodies were shown to be directed to the same antigenic site on A/Memphis/1/71 HA as the original immunizing MAb (site A or site E, respectively). However, several of these antisera were shown to contain additional distinct subpopulations of antibodies specific for heterologous influenza A virus strains, either of the H3 subtype or of a different HA subtype (H1 or H2). Since the induction of antibodies to HA of different subtypes is not a feature of the antibody response to influenza virus itself, their induction by anti-Id antibodies merits further investigation.  相似文献   

17.
Previous studies showed that the distribution of antigenic site specificity of neutralizing antibodies to type 3 poliovirus obtained with the inactivated poliovirus vaccine can be deficient as compared with that obtained following poliovirus infection. This observation was shown by the relatively low capacity of sera from inactivated-poliovirus-vaccine-immunized persons to neutralize poliovirus cleaved at antigenic site 1. We investigated possibilities for improving the situation in a mouse model. Balb/c mice were immunized with intact or trypsin-cleaved type 3 poliovirus (Saukett strain). Sera from mice immunized with the intact virus readily neutralized the intact virus but neutralized the cleaved virus only rarely. In contrast, cleaved-virus-immunized mice produced antibodies that were able to neutralize the cleaved virus as well as the intact one. Mice immunized with a 100-fold-higher dose of the intact virus produced significant levels of antibodies to the cleaved virus, too. Somewhat surprisingly, mice immunized with high doses of the cleaved virus produced antibodies specific for the intact loop between beta sheets B and C of VP1 (virion protein 1), which should be cleaved in the immunogen. This was shown by a higher titer of antibodies to intact Saukett virus than to the corresponding cleaved virus, as well as to a type 1/type 3 hybrid poliovirus in which only the BC loop amino acids were derived from type 3 poliovirus. The cleavage-induced enhanced availability of antigenic determinants residing outside the BC loop was also shown by increased neutralization titers of monoclonal antibodies specific for some of these other determinants. These results indicate that by using a trypsin-cleaved type 3 poliovirus as a parenteral immunogen, it is possible to change the distribution of antigenic site specificities of neutralizing antibodies to resemble that following poliovirus infection.  相似文献   

18.
Five poliovirus recombinants containing sequences corresponding to foot-and-mouth disease virus (FMDV) antigenic sites were constructed. Viable virus was recovered from four of these plasmids, in which the VP1 beta B-beta C loop (antigenic site 1) of poliovirus type 1 Sabin had been replaced with sequences derived from the VP1 beta G-beta H loop (antigenic site 1) of FMDV O1 Kaufbeuren (O1K), chimera O1.1 (residues 141 to 154), chimera O1.2 (residues 147 to 156), and chimera O1.3 (residues 140 to 160) or from the beta B-beta C loop of VP1 (antigenic site 3) in chimera O3.1 (residues 40 to 49). One chimera (O1.3) was neutralized by FMDV-specific polyclonal serum and monoclonal antibodies directed against antigenic site 1 of FMDV. Chimeras O1.3 and O3.1 induced site-specific FMDV-neutralizing antibodies in guinea pigs. Chimera O1.3 was capable of inducing a protective response against FMDV challenge in some guinea pigs.  相似文献   

19.
Sera from 17 of 18 adult volunteers challenged with a virulent serotype 1 rotavirus strain (D) were examined for prechallenge antibody levels against several well-defined rotavirus VP7 and VP4 neutralization epitopes by a competitive epitope-blocking immunoassay (EBA) in order to determine whether correlates of resistance to diarrheal illness could be identified. The presence of prechallenge serum antibody at a titer of greater than or equal to 1:20 that blocked the binding of a serotype 1 VP7-specific monoclonal antibody (designated 2C9) that maps to amino acid residue 94 in antigenic site A on the serotype 1 VP7 was significantly associated with resistance to illness or shedding (P less than 0.001) or illness and shedding (P less than 0.01) following challenge with the serotype 1 virus. In addition, an EBA antibody titer of greater than or equal to 1:20 in prechallenge serum against a serotype 3 VP7-specific epitope (defined by monoclonal antibody 954/159) that maps to amino acid 94 on the serotype 3 VP7 was also significantly associated with resistance to illness or shedding (P = 0.02), with a trend for protection against illness and shedding. A trend was also noted between the presence of EBA antibody against a cross-reactive VP4 epitope common to many human rotavirus strains, including the challenge virus, or a rhesus monkey rotavirus strain-specific VP4 antigenic site, and resistance to illness or shedding. These data confirm that the presence of serum antibody correlates with resistance to rotavirus illness or shedding but, in addition, demonstrate the association of antibody to a specific epitope with resistance to illness or shedding. These data also suggest that antigenic site A on the rotavirus VP7, composed of amino acids 87 to 96, may be involved in the formation of a major protective epitope. Further study of the role of this epitope in the development of homotypic and heterotypic immunity to rotaviruses following natural or vaccine-induced infection may be important in the development of strategies for control of rotavirus diarrheal disease.  相似文献   

20.
We generated Theiler's murine encephalomyelitis virus mutants resistant to several neutralizing monoclonal antibodies (MAbs) having their epitopes near a trypsin cleavage site of VP1. Neutralization and Western blot (immunoblot) studies suggest that two of the MAbs have identical epitopes that partly overlap the epitope of a third MAb. Sequencing of RNA of the mutants localized the epitopes to a site near the carboxyl end of VP1. The limited diversity of nucleotide changes seen in the mutants and the immunodominance of the site suggest that the carboxyl end of VP1 may have an important function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号