首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Liu TK  Zhang YB  Liu Y  Sun F  Gui JF 《Journal of virology》2011,85(23):12769-12780
The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) inhibits protein synthesis by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). In fish species, in addition to PKR, there exists a PKR-like protein kinase containing Z-DNA binding domains (PKZ). However, the antiviral role of fish PKZ and the functional relationship between fish PKZ and PKR remain unknown. Here we confirmed the coexpression of fish PKZ and PKR proteins in Carassius auratus blastula embryonic (CAB) cells and identified them as two typical interferon (IFN)-inducible eIF2α kinases, both of which displayed an ability to inhibit virus replication. Strikingly, fish IFN or all kinds of IFN stimuli activated PKZ and PKR to phosphorylated eIF2α. Overexpression of both fish kinases together conferred much more significant inhibition of virus replication than overexpression of either protein, whereas morpholino knockdown of both made fish cells more vulnerable to virus infection than knockdown of either. The antiviral ability of fish PKZ was weaker than fish PKR, which correlated with its lower ability to phosphorylate eIF2α than PKR. Moreover, the independent association of fish PKZ or PKR reveals that each of them formed homodimers and that fish PKZ phosphorylated eIF2α independently on fish PKR and vice versa. These results suggest that fish PKZ and PKR play a nonredundant but cooperative role in IFN antiviral response.  相似文献   

2.
Indomethacin, a cyclooxygenase‐1 and ‐2 inhibitor widely used in the clinic for its potent anti‐inflammatory/analgesic properties, possesses antiviral activity against several viral pathogens; however, the mechanism of antiviral action remains elusive. We have recently shown that indomethacin activates the double‐stranded RNA (dsRNA)‐dependent protein kinase R (PKR) in human colon cancer cells. Because of the important role of PKR in the cellular defence response against viral infection, herein we investigated the effect of indomethacin on PKR activity during infection with the prototype rhabdovirus vesicular stomatitis virus. Indomethacin was found to activate PKR in an interferon‐ and dsRNA‐independent manner, causing rapid (< 5 min) phosphorylation of eukaryotic initiation factor‐2 α‐subunit (eIF2α). These events resulted in shutting off viral protein translation and blocking viral replication (IC50 = 2 μM) while protecting host cells from virus‐induced damage. Indomethacin did not affect eIF2α kinases PKR‐like endoplasmic reticulum‐resident protein kinase (PERK) and general control non‐derepressible‐2 (GCN2) kinase, and was unable to trigger eIF2α phosphorylation in the presence of PKR inhibitor 2‐aminopurine. In addition, small‐interfering RNA‐mediated PKR gene silencing dampened the antiviral effect in indomethacin‐treated cells. The results identify PKR as a critical target for the antiviral activity of indomethacin and indicate that eIF2α phosphorylation could be a key element in the broad spectrum antiviral activity of the drug.  相似文献   

3.
Vaccinia virus (VV) mutants lacking the double-stranded RNA (dsRNA)-binding E3L protein (ΔE3L mutant VV) show restricted replication in most cell types, as dsRNA produced by VV activates protein kinase R (PKR), leading to eIF2α phosphorylation and impaired translation initiation. Here we show that cells infected with ΔE3L mutant VV assemble cytoplasmic granular structures which surround the VV replication factories at an early stage of the nonproductive infection. These structures contain the stress granule-associated proteins G3BP, TIA-1, and USP10, as well as poly(A)-containing RNA. These structures lack large ribosomal subunit proteins, suggesting that they are translationally inactive. Formation of these punctate structures correlates with restricted replication, as they occur in >80% of cells infected with ΔE3L mutant VV but in only 10% of cells infected with wild-type VV. We therefore refer to these structures as antiviral granules (AVGs). Formation of AVGs requires PKR and phosphorylated eIF2α, as mouse embryonic fibroblasts (MEFs) lacking PKR displayed reduced granule formation and MEFs lacking phosphorylatable eIF2α showed no granule formation. In both cases, these decreased levels of AVG formation correlated with increased ΔE3L mutant VV replication. Surprisingly, MEFs lacking the AVG component protein TIA-1 supported increased replication of ΔE3L mutant VV, despite increased eIF2α phosphorylation and the assembly of AVGs that lacked TIA-1. These data indicate that the effective PKR-mediated restriction of ΔE3L mutant VV replication requires AVG formation subsequent to eIF2α phosphorylation. This is a novel finding that supports the hypothesis that the formation of subcellular protein aggregates is an important component of the successful cellular antiviral response.  相似文献   

4.
Most viruses express during infection products that prevent or neutralize the effect of the host dsRNA activated protein kinase (PKR). Translation of Sindbis virus (SINV) mRNA escapes to PKR activation and eIF2 phosphorylation in infected cells by a mechanism that requires a stem loop structure in viral 26S mRNA termed DLP to initiate translation in the absence of functional eIF2. Unlike the rest of viruses tested, we found that Alphavirus infection allowed a strong PKR activation and eIF2α phosphorylation in vitro and in infected animals so that the presence of DLP structure in mRNA was critical for translation and replication of SINV. Interestingly, infection of MEFs with some viruses that express PKR inhibitors prevented eIF2α phosphorylation after superinfection with SINV, suggesting that viral anti-PKR mechanisms could be exchangeable. Thus, translation of SINV mutant lacking the DLP structure (ΔDLP) in 26S mRNA was partially rescued in cells expressing vaccinia virus (VV) E3 protein, a known inhibitor of PKR. This case of heterotypic complementation among evolutionary distant viruses confirmed experimentally a remarkable case of convergent evolution in viral anti-PKR mechanisms. Our data reinforce the critical role of PKR in regulating virus-host interaction and reveal the versatility of viruses to find different solutions to solve the same conflict.  相似文献   

5.
Huang HL  Wu JL  Chen MH  Hong JR 《PloS one》2011,6(8):e22935
Aquatic birnavirus induces mitochondria-mediated cell death, but whether connects to endoplasmic reticulum (ER) stress is still unknown. In this present, we characterized that IPNV infection triggers ER stress-mediated cell death via PKR/eIF2α phosphorylation signaling for regulating the Bcl-2 family protein expression in fish cells. The IPNV infection can induce ER stress as follows: (1) ER stress sensor ATF6 cleavaged; (2) ER stress marker GRP78 upregulation, and (3) PERK/eIF2α phosphorylation. Then, the IPNV-induced ER stress signals can induce the CHOP expression at early (6 h p.i.) and middle replication (12 h p.i.) stages. Moreover, IPNV-induced CHOP upregulation dramatically correlates to apparently downregulate the Bcl-2 family proteins, Bcl-2, Mcl-1 and Bcl-xL at middle replication stage (12 h p.i.) and produces mitochondria membrane potential (MMP) loss and cell death. Furthermore, with GRP78 synthesis inhibitor momitoxin (VT) and PKR inhibitor 2-aminopurine (2-AP) treatment for blocking GRP78 expression and eIF2α phosphorylation, PKR/PERK may involve in eIF2α phosphorylation/CHOP upregulation pathway that enhances the downstream regulators Bcl-2 family proteins expression and increased cell survival. Taken together, our results suggest that IPNV infection activates PKR/PERK/eIF2α ER stress signals for regulating downstream molecules CHOP upregulation and Bcl-2 family downregulation that led to induce mitochondria-mediated cell death in fish cells, which may provide new insight into RNA virus pathogenesis and disease.  相似文献   

6.
Phosphorylation of the alpha (α) subunit of the eukaryotic initiation factor 2 (eIF2) at serine 51 is an important mechanism of translational control in response to various forms of environmental stress. In metazoans, eIF2α phosphorylation is mediated by four kinases each of which becomes activated by distinct stimuli. Previous work established that expression of a chimera protein comprising of the bacteria Gyrase B N-terminal (GyrB) domain fused to the kinase domain (KD) of the eIF2α kinase PKR is capable of inducing eIF2α phosphorylation in cultured cells after treatment with the antibiotic coumermycin. Herein, we report the development of transgenic mice expressing the fusion protein GyrB.PKR ubiquitously. Treatment of mice with coumermycin induces eIF2α phosphorylation in vivo as demonstrated by immunoblotting and immunoshistochemistry of mouse tissues. The GyrB.PKR transgene represents a useful model system to investigate the biological effects of the conditional induction of eIF2α phosphorylation in vivo in the absence of parallel signaling pathways that are elicited in response to stress.  相似文献   

7.
Zhu R  Zhang YB  Zhang QY  Gui JF 《Journal of virology》2008,82(14):6889-6901
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2alpha. The interaction between PoPKR and eIF2alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.  相似文献   

8.
In screening a library of natural and synthetic products for eukaryotic translation modulators, we identified two natural products, isohymenialdisine and hymenialdisine, that exhibit stimulatory effects on translation. The characterization of these compounds led to the insight that mRNA used to program the translation extracts during high-throughput assay setup was leading to phosphorylation of eIF2α, a potent negative regulatory event that is mediated by one of four kinases. We identified double-stranded RNA-dependent protein kinase (PKR) as the eIF2α kinase that was being activated by exogenously added mRNA template. Characterization of the mode of action of isohymenialdisine revealed that it directly acts on PKR by inhibiting autophosphorylation, perturbs the PKR–eIF2α phosphorylation axis, and can be modeled into the PKR ATP binding site. Our results identify a source of “false positives” for high-throughput screen campaigns using translation extracts, raising a cautionary note for this type of screen.  相似文献   

9.
Activation of the double-stranded RNA (dsRNA)-activated protein kinase PKR results in inhibition of general translation through phosphorylation of the eukaryotic initiation factor 2 alpha-subunit on serine 51 (eIF2αSer51). Previously, we have reported that the adaptor protein Nck-1 modulates eIF2αSer51 phosphorylation by a subset of eIF2α kinases, including PKR. Herein, we demonstrate that Nck-1 prevents efficient activation of PKR by dsRNA, revealing that Nck-1 acts at the level of PKR. In agreement, Nck-1 impairs p38MAPK activation and attenuates cell death induced by dsRNA, in addition to diminish eIF2αSer51 phosphorylation. Our data show that the inhibitory effect of Nck-1 on PKR is reversible, as it could be overcome by increasing levels of dsRNA. Interestingly, we found that Nck-1 interacts with the inactive form of PKR, independently of its Src homology domains. Furthermore, we uncovered that Nck-1 is substrate of PKR in vitro. All together, our data provide the first evidence identifying Nck-1 as a novel endogenous regulator of PKR and support the notion that Nck-1-PKR interaction could be a way to limit PKR activation.  相似文献   

10.
YC Tu  CY Yu  JJ Liang  E Lin  CL Liao  YL Lin 《Journal of virology》2012,86(19):10347-10358
Japanese encephalitis virus (JEV) is an enveloped flavivirus with a single-stranded, positive-sense RNA genome encoding three structural and seven nonstructural proteins. To date, the role of JEV nonstructural protein 2A (NS2A) in the viral life cycle is largely unknown. The interferon (IFN)-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) phosphorylates the eukaryotic translation initiation factor 2α subunit (eIF2α) after sensing viral RNA and results in global translation arrest as an important host antiviral defense response. In this study, we found that JEV NS2A could antagonize PKR-mediated growth inhibition in a galactose-inducible PKR-expressing yeast system. In human cells, PKR activation, eIF2α phosphorylation, and the subsequent translational inhibition and cell death triggered by dsRNA and IFN-α were also repressed by JEV NS2A. Moreover, among the four eIF2α kinases, NS2A specifically blocked the eIF2α phosphorylation mediated by PKR and attenuated the PKR-promoted cell death induced by the chemotherapeutic drug doxorubicin. A single point mutation of NS2A residue 33 from Thr to Ile (T33I) abolished the anti-PKR potential of JEV NS2A. The recombinant JEV mutant carrying the NS2A-T33I mutation showed reduced in vitro growth and in vivo virulence phenotypes. Thus, JEV NS2A has a novel function in blocking the host antiviral response of PKR during JEV infection.  相似文献   

11.
Treatment of murine myotubes with high glucose concentrations (10 and 25 mM) stimulated protein degradation through the ubiquitin-proteasome pathway, and also caused activation (autophosphorylation) of PKR (double-stranded-RNA-dependent protein kinase) and eIF2α (eukaryotic initiation factor 2α). Phosphorylation of PKR and eIF2α was also seen in the gastrocnemius muscle of diabetic ob/ob mice. High glucose levels also inhibited protein synthesis. The effect of glucose on protein synthesis and degradation was not seen in myotubes transfected with a catalytically inactive variant (PKRΔ6). High glucose also induced an increased activity of both caspase-3 and -8, which led to activation of PKR, since this was completely attenuated by the specific caspase inhibitors. Activation of PKR also led to activation of p38MAPK (mitogen activated protein kinase), leading to ROS (reactive oxygen species) formation, since this was attenuated by the specific p38MAPK inhibitor SB203580. ROS formation was important in protein degradation, since it was completely attenuated by the antioxidant butylated hydroxytoluene. These results suggest that high glucose induces muscle atrophy through the caspase-3/-8 induced activation of PKR, leading to phosphorylation of eIF2α and depression of protein synthesis, together with PKR-mediated ROS production, through p38MAPK and increased protein degradation.  相似文献   

12.
13.
14.
In response to mammalian orthoreovirus (MRV) infection, cells initiate a stress response that includes eIF2α phosphorylation and protein synthesis inhibition. We have previously shown that early in infection, MRV activation of eIF2α phosphorylation results in the formation of cellular stress granules (SGs). In this work, we show that as infection proceeds, MRV disrupts SGs despite sustained levels of phosphorylated eIF2α and, further, interferes with the induction of SGs by other stress inducers. MRV interference with SG formation occurs downstream of eIF2α phosphorylation, suggesting the virus uncouples the cellular stress signaling machinery from SG formation. We additionally examined mRNA translation in the presence of SGs induced by eIF2α phosphorylation-dependent and -independent mechanisms. We found that irrespective of eIF2α phosphorylation status, the presence of SGs in cells correlated with inhibition of viral and cellular translation. In contrast, MRV disruption of SGs correlated with the release of viral mRNAs from translational inhibition, even in the presence of phosphorylated eIF2α. Viral mRNAs were also translated in the presence of phosphorylated eIF2α in PKR(-/-) cells. These results suggest that MRV escape from host cell translational shutoff correlates with virus-induced SG disruption and occurs in the presence of phosphorylated eIF2α in a PKR-independent manner.  相似文献   

15.
Picornavirus infection alters the endoplasmic reticulum (ER) membrane but it is unclear whether this induces ER stress. Infection of rhabdomyosarcoma cells with enterovirus 71 (EV71), a picornavirus, caused overexpression of the ER‐resident chaperone proteins, BiP and calreticulin, and phosphorylation of eIF2α, but infection with UV‐inactivated virus did not, indicating that ER stress was induced by viral replication and not by viral attachment or entry. Silencing (si)RNA knockdown demonstrated that phosphorylation of eIF2α was dependent on PKR: eIF2α phosphorylation was reduced by siPKR but not by siPERK. We provided evidence showing that PERK is upstream of PKR and is thus able to negatively regulate the PKR‐eIF2α pathway. Pulse‐chase experiments revealed that EV71 infection inhibited translation and activation of ATF6. Expression of BiP at the protein level was activated by a virus‐dependent, ATF6‐independent mechanism. EV71 upregulated XBP1 mRNA level, but neither IRE1‐mediated XBP1 splicing nor its active spliced protein was detected, and its downstream gene, EDEM, was not activated. Epigenetic BiP overexpression alleviated EV71‐induced ER stress and reduced viral protein expression and replication. Our results suggest that EV71 infection induces ER stress but modifies the outcome to assist viral replication.  相似文献   

16.
α干扰素为治疗丙型肝炎病毒(HCV)感染的主要药物,但部分患者呈干扰素耐受而不能获得持久的病毒阴转,其可能的原因之一是病毒通过其编码的蛋白(NS5A及E2)抑制干扰素诱导的抗病毒效应分子——双链RNA激活的蛋白激酶(PKR)的活性.而关于PKR是否在IFN-α抗HCV的机理中起抑制作用目前仍有争议.为研究PKR对HCV蛋白合成环节是否有抑制作用,通过构建野生型 PKR真核表达载体(pPKRwt)及主要起负性调节作用的缺失突变PKR真核表达载体(pPKRΔ6),并将pPKRwt /pPKRΔ6 与HCV复制子RNA同时转染Huh7细胞进行共表达, 用Western印迹检测 HCV IRES 下游的NPTⅡ蛋白表达水平,与转染空载体的对照细胞及单用IFN-α处理的细胞相比较.结果显示:表达PKRwt的细胞中NPTⅡ蛋白水平低于转染空载体的对照细胞,但高于经IFN-α单独处理的细胞;表达PKRΔ6的细胞中NPTⅡ蛋白水平与对照细胞无明显差别,但PKRΔ能部分抵消IFN-α的抑制作用,说明在IFN-α抑制HCV IRES指导的蛋白合成中,PKR有一定的抑制作用,但可能还有其它的PKR非依赖机制参与.  相似文献   

17.
The α-subunit of eukaryotic initiation factor eIF2 (eIF2α) plays an important role in the regulation of mRNA translation through modulation of the interaction of eIF2 and a second initiation factor, eIF2B. The interaction of the two proteins is regulatedin vivoby phosphorylation of eIF2α at Ser51. In the present study, rat eIF2α was expressed in Sf21 cells using the baculovirus expression system. The recombinant protein was purified to >90% homogeneity in a single immunoaffinity chromatographic step. The protein was free of endogenous eIF2α kinase activity and was rapidly phosphorylated by the eIF2α kinases HCR and PKR. A variant of eIF2α in which the phosphorylation site was changed to Ala was also expressed and purified. The variant eIF2α was not phosphorylated by either HCR or PKR, demonstrating that the kinases specifically phosphorylate the correct site in the recombinant protein even in the absence of the other two subunits of the protein. In summary, a rapid and inexpensive method for obtaining eIF2α has been developed. Use of the wildtype and variant forms of eIF2α to measure eIF2α kinase activity in cell and tissue extracts should greatly facilitate examination of the regulation of mRNA translation under a variety of conditions.  相似文献   

18.
Phosphorylation of the translation initiation factor eIF2 on Ser51 of its alpha subunit is a key event for regulation of protein synthesis in all eukaryotes. M156R, the product of the myxoma virus M156R open reading frame, has sequence similarity to eIF2alpha as well as to a family of viral proteins that bind to the interferon-induced protein kinase PKR and inhibit phosphorylation of eIF2alpha. In this study, we demonstrate that, like eIF2alpha. M156R is an efficient substrate for phosphorylation by PKR and can compete with eIF2alpha. To gain insights into the substrate specificity of the eIF2alpha kinases, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel beta-barrel with two of the strands connected by a loop and an alpha-helix. The similarity between M156R and the beta-barrel structure in the N terminus of eIF2alpha suggests that the viral homologs mimic eIF2alpha structure in order to compete for binding to PKR. A homology-modeled structure of the well-studied vaccinia virus K3L was generated on the basis of alignment with M156R. Comparison of the structures of the K3L model, M156R, and human eIF2alpha indicated that residues important for binding to PKR are located at conserved positions on the surface of the beta-barrel and in the mobile loop, identifying the putative PKR recognition motif.  相似文献   

19.
Recent reports demonstrate that PKR is constitutively active in a variety of tumors and is required for tumor maintenance and growth. Here we report acute leukemia cell lines contain elevated levels of p‐T451 PKR and PKR activity as compared to normal controls. Inhibition of PKR with a specific inhibitor, as well as overexpression of a dominant‐negative PKR, inhibited cell proliferation and induced cell death. Interestingly, PKR inhibition using the specific inhibitor resulted in a time‐dependent augmentation of AKT S473 and GSK‐3α S21 phosphorylation, which was confirmed in patient samples. Increased phosphorylation of AKT and GSK‐3α was not dependent on PI3K activity. PKR inhibition augmented levels of p‐S473 AKT and p‐S21/9 GSK‐3α/β in the presence of the PI3K inhibitor, LY294002, but was unable to augment GSK‐3α or β phosphorylation in the presence of the AKT inhibitor, A443654. Pre‐treatment with the PKR inhibitor blocked the ability of A443654 and LY294002 to promote phosphorylation of eIF2α, indicating the mechanism leading to AKT phosphorylation and activation did not require eIF2α phosphorylation. The effects of PKR inhibition on AKT and GSK‐3 phosphorylation were found to be, in part, PP2A‐dependent. These data indicate that, in acute leukemia cell lines, constitutive basal activity of PKR is required for leukemic cell homeostasis and growth and functions as a negative regulator of AKT, thereby increasing the pool of potentially active GSK‐3. J. Cell. Physiol. 221: 232–241, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

20.
The dsRNA-dependent kinase PKR is an interferon-inducible protein with ability to phosphorylate the α subunit of the eukaryotic initiation factor (eIF)-2 complex, resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. Here we analyzed the modification of PKR by the small ubiquitin-like modifiers SUMO1 and SUMO2 and evaluated the consequences of PKR SUMOylation. Our results indicate that PKR is modified by both SUMO1 and SUMO2, in vitro and in vivo. We identified lysine residues Lys-60, Lys-150, and Lys-440 as SUMOylation sites in PKR. We show that SUMO is required for efficient PKR-dsRNA binding, PKR dimerization, and eIF2α phosphorylation. Furthermore, we demonstrate that SUMO potentiates the inhibition of protein synthesis induced by PKR in response to dsRNA, whereas a PKR SUMOylation mutant is impaired in its ability to inhibit protein synthesis and shows reduced capability to control vesicular stomatitis virus replication and to induce apoptosis in response to vesicular stomatitis virus infection. In summary, our data demonstrate the important role of SUMO in processes mediated by the activation of PKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号