首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 871 毫秒
1.
Varicella-zoster virus (VZV) glycoprotein E (gE) is the most abundant glycoprotein in infected cells and, in contrast to those of other alphaherpesviruses, is essential for viral replication. The gE ectodomain contains a unique N-terminal region required for viral replication, cell-cell spread, and secondary envelopment; this region also binds to the insulin-degrading enzyme (IDE), a proposed VZV receptor. To identify new functional domains of the gE ectodomain, the effect of mutagenesis of the first cysteine-rich region of the gE ectodomain (amino acids 208 to 236) was assessed using VZV cosmids. Deletion of this region was compatible with VZV replication in vitro, but cell-cell spread of the rOka-ΔCys mutant was reduced significantly. Deletion of the cysteine-rich region abolished the binding of the mutant gE to gI but not to IDE. Preventing gE binding to gI altered the pattern of gE expression at the plasma membrane of infected cells and the posttranslational maturation of gI and its incorporation into viral particles. In contrast, deletion of the first cysteine-rich region did not affect viral entry into human tonsil T cells in vitro or into melanoma cells infected with cell-free VZV. These experiments demonstrate that gE/gI heterodimer formation is essential for efficient cell-cell spread and incorporation of gI into viral particles but that it is dispensable for infectious varicella-zoster virion formation and entry into target cells. Blocking gE binding to gI resulted in severe impairment of VZV infection of human skin xenografts in SCIDhu mice in vivo, documenting the importance of cell fusion mediated by this complex for VZV virulence in skin.  相似文献   

2.
Z Yao  C Grose 《Journal of virology》1994,68(7):4204-4211
Varicella-zoster virus (VZV) glycoprotein gpIV, to be renamed VZV gI, forms a heterodimer with glycoprotein gpI (gE) which functions as an Fc receptor in virus-infected cells. Like VZV gpI (gE), this viral glycoprotein is phosphorylated in cell culture during biosynthesis. In this report, we investigated the nature and specificity of the phosphorylation event involving VZV gpIV (gI). Phosphoamino acid analysis indicated that gpIV (gI) was modified mainly on serine residues. To identify the precise location of the phosphorylation site on the 64-kDa protein, a step-by-step mutagenesis procedures was followed. Initially a tailless mutant was generated, and this truncated product was no longer phosphorylated. Thereafter, point mutations were made within the cytoplasmic tail of gpIV (gI) at potential phosphorylation sites. The phosphorylation site was localized to the following sequence: Ser-Pro-Pro (amino acids 343 to 345). Examination of the point mutants established that serine 343 in the cytoplasmic tail was the major phosphoacceptor. In addition, we found that the prolines located immediately to the C terminus of serine 343 were an integral part of the kinase recognition sequence. This site was located immediately N terminal to a predicted beta-turn secondary structure. By comparison with known substrate consensus sequences for various protein kinases, these data suggested that the phosphorylation of VZV gpIV (gI) was catalyzed by a proline-directed protein kinase. Computer homology analysis of other alphaherpesviruses demonstrated that a similar potential phosphorylation site was highly conserved in the cytoplasmic tails of herpes simplex virus type 1 gI, equine herpesvirus type 1 gI, and pseudorabies virus gp63.  相似文献   

3.
Open reading frames within the unique short segment of alphaherpesvirus genomes participate in egress and cell-to-cell spread. The case of varicella-zoster virus (VZV) is of particular interest not only because the virus is highly cell associated but also because its most prominent cell surface protein, gE, bears semblance to the mammalian Fc receptor FcγRII. A previous study demonstrated that when expressed alone in cells, VZV gE was endocytosed from the cell surface through a tyrosine localization motif in its cytoplasmic tail (J. K. Olson and C. Grose, J. Virol. 71:4042–4054, 1997). Since VZV gE is normally found in association with gI in the infected cell, the present study was directed at defining the trafficking of the VZV gE:gI protein complex. First, VZV gI underwent endocytosis and recycling when it was expressed alone in cells, and interestingly, VZV gI contained a methionine-leucine internalization motif in its cytoplasmic tail. Second, VZV gI was found by confocal microscopy to colocalize with VZV gE during endocytosis and recycling in cells. Third, by a quantitative internalization assay, VZV gE:gI was shown to undergo endocytosis more efficiently (steady state, 55 to 60%) than either gE alone (steady state, ~32%) or gI alone (steady state, ~45%). Further, examination of endocytosis-deficient mutant proteins demonstrated that VZV gI exerted a more pronounced effect than gE on internalization of the complex. Most importantly, therefore, these studies suggest that VZV gI behaves as an accessory component by facilitating the endocytosis of the major constituent gE and thereby modulating the trafficking of the entire cell surface gE:gI Fc receptor complex.  相似文献   

4.
The glycoproteins I and E of pseudorabies virus are important mediators of cell-to-cell spread and virulence in all animal models tested. Although these two proteins form a complex with one another, ascribing any function to the individual proteins has been difficult. We have shown previously, using nonsense mutations, that the N-terminal ectodomain of the gE protein is sufficient for gE-mediated transsynaptic spread whereas the cytoplasmic domain of the protein is required for full expression of virulence. These same studies demonstrated that the cytoplasmic domain of gE is also required for endocytosis of the protein. In this report, we describe the construction of viruses with nonsense mutations in gI that allowed us to determine the contributions of the gI cytoplasmic domain to protein expression as well as virus neuroinvasion and virulence after infection of the rat eye. We also constructed double mutants with nonsense mutations in both gE and gI so that the contributions of both the gE and gI cytoplasmic domains could be determined. We observed that the gI cytoplasmic domain is required for efficient posttranslational modification of the gI protein. The gE cytoplasmic domain has no effect on gE posttranslational glycosylation. In addition, we found that infection of all gE-gI-dependent anterograde circuits projecting from the rat retina requires both ectodomains and at least one of the cytoplasmic domains of the proteins. The gI cytoplasmic domain promotes transsynaptic spread of virus better than the gE cytoplasmic domain. Interestingly, both gE and gI cytoplasmic tails are required for virulence; lack of either one or both results in an attenuated infection. These data suggest that gE and gI play differential roles in mediating directional neuroinvasion of the rat; however, the gE and gI cytoplasmic domains most likely function together to promote virulence.  相似文献   

5.
In the Alphaherpesvirinae subfamily, the gE and gI genes are conserved and encode membrane glycoproteins required for efficient pathogenesis (virulence). The molecular mechanism(s) responsible is not well understood, but the existence of similar phenotypes of gE and gI mutations in diverse Alphaherpesvirinae implies conservation of function(s). In this report, we describe construction of pseudorabies virus (PRV) recombinants that efficiently express the bovine herpesvirus 1 (BHV-1) membrane proteins gI and gE at the PRV gG locus. Each BHV-1 gene was cloned in a PRV mutant lacking both the PRV gI and gE coding sequences. All recombinant viruses expressed the BHV-1 proteins at levels similar to or greater than that observed after infection with parental BHV-1, and there were no observable differences in processing or ability to form gE-gI oligomers. The important observation resulting from this report is that the BHV-1 gE and gI proteins functioned together to complement the virulence defect of PRV lacking its own gE and gI genes in a rodent model, despite being derived from a highly restricted host range virus with a different pathogenic profile.  相似文献   

6.
Li Q  Krogmann T  Ali MA  Tang WJ  Cohen JI 《Journal of virology》2007,81(16):8525-8532
Varicella-zoster virus (VZV) glycoprotein E (gE) is required for VZV infection. Although gE is well conserved among alphaherpesviruses, the amino terminus of VZV gE is unique. Previously, we showed that gE interacts with insulin-degrading enzyme (IDE) and facilitates VZV infection and cell-to-cell spread of the virus. Here we define the region of VZV gE required to bind IDE. Deletion of amino acids 32 to 71 of gE, located immediately after the predicted signal peptide, resulted in loss of the ability of gE to bind IDE. A synthetic peptide corresponding to amino acids 24 to 50 of gE blocked its interaction with IDE in a concentration-dependent manner. However, a chimeric gE in which amino acids 1 to 71 of VZV gE were fused to amino acids 30 to 545 of herpes simplex virus type 2 gE did not show an increased level of binding to IDE compared with that of full-length HSV gE. Thus, amino acids 24 to 71 of gE are required for IDE binding, and the secondary structure of gE is critical for the interaction. VZV gE also forms a heterodimer with glycoprotein gI. Deletion of amino acids 163 to 208 of gE severely reduced its ability to form a complex with gI. The amino portion of IDE, as well an IDE mutant in the catalytic domain of the protein, bound to gE. Therefore, distinct motifs of VZV gE are important for binding to IDE or to gI.  相似文献   

7.
Varicella-zoster virus (VZV) encodes at least six glycoproteins. Glycoprotein I (gI), the product of open reading frame 67, is a 58- to 62-kDa glycoprotein found in VZV-infected cells. We constructed two VZV gI deletion mutants. Immunoprecipitation of VZV gE from infected cells indicated that cells infected with VZV deleted for gI expressed a gE that was larger (100 kDa) than that expressed in cells infected with the parental virus (98 kDa). Cell-associated or cell-free VZV deleted for gI grew to lower titers in melanoma cells than did parental VZV. While VZV deleted for gI replicated in other human cells, the mutant virus replicated to very low titers in primary guinea pig and monkey cells and did not replicate in Vero cells. When compared with the parental virus, rescued viruses, in which the gI deletion was restored with a wild-type allele, showed a similarly sized gE and comparable growth patterns in melanoma and Vero cells. VZV deleted for gI entered Vero cells; however, viral DNA synthesis was impaired in these cells. The VZV gI mutant was slightly impaired for adsorption to human cells. Thus, VZV gI is required for replication of the virus in Vero cells, for efficient replication of the virus in nonhuman cells, and for normal processing of gE.  相似文献   

8.
This study reports the identification and initial characterization of the precursors, modified forms, and oligomers of bovine herpesvirus 1 (BHV-1) gI and gE proteins with polyvalent rabbit serum specific for gI or gE. Our experiments used the Colorado strain of BHV-1 and mutant viruses with insertions of the Escherichia coli lacZ gene into the predicted gE and gI reading frames. We also translated the gE and gI open reading frames in vitro and expressed them in uninfected cells using eukaryotic expression vectors. Precursor-product relationships were established by pulse-chase analysis and endoglycosidase H and glycopeptidase F digestions. Like the homologous glycoproteins of herpes simplex virus type 1, pseudorabies virus, and varicella-zoster virus, BHV-1 gI and gE are modified by N-linked glycosylation and associate with each other soon after synthesis, forming a noncovalent complex in infected and transfected cells. An analysis of mutant and wild-type-virus-infected cells and transfected COS cells expressing gE or gI alone suggested that gE-gI complex formation is necessary for efficient processing of the gE precursor to its mature form. One new finding was that unlike the other alphaherpesvirus gI homologs, a fraction of pulse-labeled gI synthesized in BHV-1-infected cells apparently is cleaved into two relatively stable fragments 2 to 4 h after the pulse. Finally, we incubated BHV-1-infected cell extracts with nonimmune mouse, rabbit, horse, pig, and calf sera and found no evidence that gE or gI functioned as Fc receptors as reported for the herpes simplex virus type 1 and varicella-zoster virus homologs.  相似文献   

9.
Herpes simplex virus (HSV) glycoprotein heterodimer gE/gI is necessary for virus spread in epithelial and neuronal tissues. Deletion of the relatively large gE cytoplasmic (CT) domain abrogates the ability of gE/gI to mediate HSV spread. The gE CT domain is required for the sorting of gE/gI to the trans-Golgi network (TGN) in early stages of virus infection, and there are several recognizable TGN sorting motifs grouped near the center of this domain. Late in HSV infection, gE/gI, other viral glycoproteins, and enveloped virions redistribute from the TGN to epithelial cell junctions, and the gE CT domain is also required for this process. Without the gE CT domain, newly enveloped virions are directed to apical surfaces instead of to cell junctions. We hypothesized that the gE CT domain promotes virus envelopment into TGN subdomains from which nascent enveloped virions are sorted to cell junctions, a process that enhances cell-to-cell spread. To characterize elements of the gE CT domain involved in intracellular trafficking and cell-to-cell spread, we constructed a panel of truncation mutants. Specifically, these mutants were used to address whether sorting to the TGN and redistribution to cell junctions are necessary, and sufficient, for gE/gI to promote cell-to-cell spread. gE-519, lacking 32 C-terminal residues, localized normally to the TGN early in infection and then trafficked to cell junctions at late times and mediated virus spread. By contrast, mutants gE-495 (lacking 56 C-terminal residues) and gE-470 (lacking 81 residues) accumulated in the TGN but did not traffic to cell junctions and did not mediate cell-to-cell spread. A fourth mutant, gE-448 (lacking most of the CT domain), did not localize to cell junctions and did not mediate virus spread. Therefore, the capacity of gE/gI to promote cell-cell spread requires early localization to the TGN, but this is not sufficient for virus spread. Additionally, gE CT sequences between residues 495 and 519, which contain no obvious cell sorting motifs, are required to promote gE/gI traffic to cell junctions and cell-to-cell spread.  相似文献   

10.
The membrane glycoproteins gE and gI are encoded by pseudorabies virus (PRV), a neurotropic, broad-host-range alphaherpesvirus of swine. PRV gE and gI are required for anterograde spread to a restricted set of retinorecipient neurons in the brain after infection of the rat retina. A related alphaherpesvirus, encoding gE and gI homologs, is called bovine herpesvirus 1.1 (BHV-1.1). BHV-1.1 is a respiratory pathogen of highly restricted host range and, in contrast to PRV, is unable to propagate in or cause disease in rodents. We have shown previously that the BHV-1.1 gE and gI proteins are capable of complementing the virulence functions of PRV gE and gI in a rodent model (A. C. Knapp and L. W. Enquist, J. Virol. 71:2731-2739, 1997). We examined the ability of the BHV-1.1 gE and gI homologs to direct circuit-specific invasion of the rat central nervous system by PRV. Both complete open reading frames were cloned into a PRV mutant lacking the PRV gE and gI genes. Recombinant viruses were analyzed for the ability to invade the rat brain after infection of the retina. Surprisingly, in a portion of the animals tested, the BHV-1.1 gE and gI proteins functioned autonomously to promote spread of PRV to a subset of retinorecipient regions of the brain. First, the presence of BHV-1.1 gI alone, but not PRV gI alone, promoted viral invasion of the optic tectum. Second, expression of BHV-1.1 gE alone facilitated PRV infection of a subset of neurons in the hippocampus not normally infected by PRV. When both BHV-1.1 proteins were expressed in a coinfection, all retinorecipient regions of the rat brain were infected. Therefore, depending on the viral source, homologs of gE and gI differentially affect spread between synaptically connected neurons in the rat.  相似文献   

11.
Herpes simplex virus (HSV) glycoproteins gE and gI form an immunoglobulin G (IgG) Fc receptor (FcγR) that binds the Fc domain of human anti-HSV IgG and inhibits Fc-mediated immune functions in vitro. gE or gI deletion mutant viruses are avirulent, probably because gE and gI are also involved in cell-to-cell spread. In an effort to modify FcγR activity without affecting other gE functions, we constructed a mutant virus, NS-gE339, that has four amino acids inserted into gE within the domain homologous to mammalian IgG FcγRs. NS-gE339 expresses gE and gI, is FcγR, and does not participate in antibody bipolar bridging since it does not block activities mediated by the Fc domain of anti-HSV IgG. In vivo studies were performed with mice because the HSV-1 FcγR does not bind murine IgG; therefore, the absence of an FcγR should not affect virulence in mice. NS-gE339 causes disease at the skin inoculation site comparably to wild-type and rescued viruses, indicating that the FcγR mutant virus is pathogenic in animals. Mice were passively immunized with human anti-HSV IgG and then infected with mutant or wild-type virus. We postulated that the HSV-1 FcγR should protect wild-type virus from antibody attack. Human anti-HSV IgG greatly reduced viral titers and disease severity in NS-gE339-infected animals while having little effect on wild-type or rescued virus. We conclude that the HSV-1 FcγR enables the virus to evade antibody attack in vivo, which likely explains why antibodies are relatively ineffective against HSV infection.  相似文献   

12.
Varicella-zoster virus (VZV) glycoprotein I (gI) is dispensable in cell culture; the SCIDhu model of VZV pathogenesis was used to determine whether gI is necessary in vivo. The parental and repaired viruses grew in human skin and thymus/liver implants, but the gI deletion mutant was not infectious. Thus, gI is essential for VZV infectivity in skin and T cells.  相似文献   

13.
S Mallory  M Sommer    A M Arvin 《Journal of virology》1997,71(11):8279-8288
The contributions of the glycoproteins gI (ORF67) and gE (ORF68) to varicella-zoster virus (VZV) replication were investigated in deletion mutants made by using cosmids with VZV DNA derived from the Oka strain. Deletion of both gI and gE prevented virus replication. Complete deletion of gI or deletions of 60% of the N terminus or 40% of the C terminus of gI resulted in a small plaque phenotype as well as reduced yields of infectious virus. Melanoma cells infected with gI deletion mutants formed abnormal polykaryocytes with a disrupted organization of nuclei. In the absence of intact gI, gE became localized in patches on the cell membrane, as demonstrated by confocal microscopy. A truncated N-terminal form of gI was transported to the cell surface, but its expression did not restore plaque morphology or infectivity. The fusogenic function of gH did not compensate for gI deletion or the associated disruption of the gE-gI complex. These experiments demonstrated that gI was dispensable for VZV replication in vitro, whereas gE appeared to be required. Although VZV gI was dispensable, its deletion or mutation resulted in a significant decrease in infectious virus yields, disrupted syncytium formation, and altered the conformation and distribution of gE in infected cells. Normal cell-to-cell spread and replication kinetics were restored when gI was expressed from a nonnative locus in the VZV genome. The expression of intact gI, the ORF67 gene product, is required for efficient membrane fusion during VZV replication.  相似文献   

14.
Herpes simplex virus (HSV) spreads rapidly and efficiently within epithelial and neuronal tissues. The HSV glycoprotein heterodimer gE/gI plays a critical role in promoting cell-to-cell spread but does not obviously function during entry of extracellular virus into cells. Thus, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. There was previous evidence that the large extracellular (ET) domains of gE/gI might be important in cell-to-cell spread. First, gE/gI extensively accumulates at cell junctions, consistent with being tethered there. Second, expression of gE/gI in trans interfered with HSV spread between epithelial cells. To directly test whether the gE ET domain was necessary for gE/gI to promote virus spread, a panel of gE mutants with small insertions in the ET domain was constructed. Cell-to-cell spread was reduced when insertions were made within either of two regions, residues 256 to 291 or 348 to 380. There was a strong correlation between loss of cell-to-cell spread function and binding of immunoglobulin. gE ET domain mutants 277, 291, and 348 bound gI, produced mature forms of gE that reached the cell surface, and were incorporated into virions yet produced plaques similar to gE null mutants. Moreover, all three mutants were highly restricted in spread within the corneal epithelium, in the case of mutant 277 to only 4 to 6% of the number of cells compared with wild-type HSV. Therefore, the ET domain of gE is indispensable for efficient cell-to-cell spread. These observations are consistent with our working hypothesis that gE/gI can bind extracellular ligands, so-called gE/gI receptors that are concentrated at epithelial cell junctions. This fits with similarities in structure and function of gE/gI and gD, which is a receptor binding protein.  相似文献   

15.
Varicella-zoster virus (VZV) is a neurotropic alphaherpesvirus. VZV infection of human dorsal root ganglion (DRG) xenografts in immunodeficient mice models the infection of sensory ganglia. We examined DRG infection with recombinant VZV (recombinant Oka [rOka]) and the following gE mutants: gEΔ27-90, gEΔCys, gE-AYRV, and gE-SSTT. gEΔ27-90, which lacks the gE domain that interacts with a putative receptor insulin-degrading enzyme (IDE), replicated as extensively as rOka, producing infectious virions and significant cytopathic effects within 14 days of inoculation. Since neural cells express IDE, the gE/IDE interaction was dispensable for VZV neurotropism. In contrast, gEΔCys, which lacks gE/gI heterodimer formation, was significantly impaired at early times postinfection; viral genome copy numbers increased slowly, and infectious virus production was not detected until day 28. Delayed replication was associated with impaired cell-cell spread in ganglia, similar to the phenotype of a gI deletion mutant (rOkaΔgI). However, at later time points, infection of satellite cells and other supportive nonneuronal cells resulted in extensive DRG tissue damage and cell loss such that cytopathic changes observed at day 70 were more severe than those for rOka-infected DRG. The replication of gE-AYRV, which is impaired for trans-Golgi network (TGN) localization, and the replication of gE-SSTT, which contains mutations in an acidic cluster, were equivalent to that of rOka, causing significant cytopathic effects and infectious virus production by day 14; genome copy numbers were equivalent to those of rOka. These experiments suggest that the gE interaction with cellular IDE, gE targeting to TGN sites of virion envelopment, and phosphorylation at SSTT are dispensable for VZV DRG infection, whereas the gE/gI interaction is critical for VZV neurovirulence.  相似文献   

16.
Alphaherpesviruses spread rapidly through dermal tissues and within synaptically connected neuronal circuitry. Spread of virus particles in epithelial tissues involves movement across cell junctions. Herpes simplex virus (HSV), varicella-zoster virus (VZV), and pseudorabies virus (PRV) all utilize a complex of two glycoproteins, gE and gI, to move from cell to cell. HSV gE/gI appears to function primarily, if not exclusively, in polarized cells such as epithelial cells and neurons and not in nonpolarized cells or cells that form less extensive cell junctions. Here, we show that HSV particles are specifically sorted to cell junctions and few virions reach the apical surfaces of polarized epithelial cells. gE/gI participates in this sorting. Mutant HSV virions lacking gE or just the cytoplasmic domain of gE were rarely found at cell junctions; instead, they were found on apical surfaces and in cell culture fluids and accumulated in the cytoplasm. A component of the AP-1 clathrin adapter complexes, mu1B, that is involved in sorting of proteins to basolateral surfaces was involved in targeting of PRV particles to lateral surfaces. These results are related to recent observations that (i) HSV gE/gI localizes specifically to the trans-Golgi network (TGN) during early phases of infection but moves out to cell junctions at intermediate to late times (T. McMillan and D. C. Johnson, J. Virol., in press) and (ii) PRV gE/gI participates in envelopment of nucleocapsids into cytoplasmic membrane vesicles (A. R. Brack, B. G. Klupp, H. Granzow, R. Tirabassi, L. W. Enquist, and T. C. Mettenleiter, J. Virol. 74:4004-4016, 2000). Therefore, interactions between the cytoplasmic domains of gE/gI and the AP-1 cellular sorting machinery cause glycoprotein accumulation and envelopment into specific TGN compartments that are sorted to lateral cell surfaces. Delivery of virus particles to cell junctions would be expected to enhance virus spread and enable viruses to avoid host immune defenses.  相似文献   

17.
Evidence was recently presented that herpes simplex virus type 1 (HSV-1) immunoglobulin G (IgG) Fc receptors are composed of a complex containing a previously described glycoprotein, gE, and a novel virus-induced polypeptide, provisionally named g70 (D. C. Johnson and V. Feenstra, J. Virol. 61:2208-2216, 1987). Using a monoclonal antibody designated 3104, which recognizes g70, in conjunction with antipeptide sera and virus mutants unable to express g70 or gE, we have mapped the gene encoding g70 to the US7 open reading frame of HSV-1 adjacent to the gE gene. Therefore, g70 appears to be identical to a recently described polypeptide which was named gI (R. Longnecker, S. Chatterjee, R. J. Whitley, and B. Roizman, Proc. Natl. Acad. Sci. USA 84:147-151, 1987). Under mildly denaturing conditions, monoclonal antibody 3104 precipitated both gI and gE from extracts of HSV-1-infected cells. In addition, rabbit IgG precipitated the gE-gI complex from extracts of cells transfected with a fragment of HSV-1 DNA containing the gI, gE, and US9 genes. Cells infected with mutant viruses which were unable to express gE or gI did not bind radiolabeled IgG; however, cells coinfected with two viruses, one unable to express gE and the other unable to express gI, bound levels of IgG approaching those observed with wild-type viruses. These results further support the hypothesis that gE and gI form a complex which binds IgG by the Fc domain and that neither polypeptide alone can bind IgG.  相似文献   

18.
Pseudorabies virus glycoproteins gE and gI are required to infect some, but not all, regions of the rodent central nervous system after peripheral injection. After infection of the retina, pseudorabies virus mutants lacking either gE or gI can subsequently infect neural centers involved in the control of circadian function but cannot infect visual circuits mediating visual perception or the reflex movement of the eyes. In this study, we used genetic complementation to test the hypothesis that gE and gI are required for entry into the specific retinal ganglion cells that project to visual centers. These data strongly suggest that gE and gI must function after the viruses enter primary neurons in the retina.  相似文献   

19.
Husak PJ  Kuo T  Enquist LW 《Journal of virology》2000,74(23):10975-10983
The membrane proteins gI and gE of Pseudorabies virus (PRV) are required for viral invasion and spread through some neural pathways of the rodent central nervous system. Following infection of the rat retina with wild-type PRV, virus replicates in retinal ganglion neurons and anterogradely spreads to infect all visual centers in the brain. By contrast, gI and gE null mutants do not infect a specific subset of the visual centers, e.g., the superior colliculus and the dorsal lateral geniculate nucleus. In previous experiments, we suggested that the defect was not due to inability to infect projection-specific retinal ganglion cells, because mixed infection of a gE deletion mutant and a gI deletion mutant restored the wild-type phenotype (i.e., genetic complementation occurred). In the present study, we provide direct evidence that gE and gI function to promote the spread of infection after entry into primary neurons. We used stereotaxic central nervous system injection of a fluorescent retrograde tracer into the superior colliculus and subsequent inoculation of a PRV gI-gE double null mutant into the eye of the same animal to demonstrate that viral antigen and fluorescent tracer colocalize in retinal ganglion cells. Furthermore, we demonstrate that direct injection of a PRV gI-gE double null mutant into the superior colliculus resulted in robust infection followed by retrograde transport to the eye and replication in retinal ganglion neuron cell bodies. These experiments provide additional proof that the retinal ganglion cells projecting to the superior colliculus are susceptible and permissive to gE and gI mutant viruses. Our studies confirm that gI and gE specifically facilitate anterograde spread of infection by affecting intracellular processes in the primary infected neuron such as anterograde transport in axons or egress from axon terminals.  相似文献   

20.
W Mulder  J Pol  T Kimman  G Kok  J Priem    B Peeters 《Journal of virology》1996,70(4):2191-2200
Envelope glycoprotein D (gD) is essential for entry of pseudorabies virus (PRV) into cells but is not required for the subsequent steps in virus replication. Phenotypically complemented gD mutants can infect cells and can spread, both in vitro and in mice, by direct cell-to-cell transmission. Progeny virions released by infected cells are noninfectious because they lack gD. The aim of this study was to determine the role of gD in the neuropathogenicity of PRV in its natural host, the pig. We investigated whether gD-negative PRV can spread transneuronally via synaptically linked neurons of the olfactory and trigeminal routes. High doses of a phenotypically complemented gD mutant and gD mutants that are unable to express either gI or gI plus gE were inoculated intranasally in 3- to 5-week-old pigs. Compared with the wild-type virus, the virulence of the gD mutant was reduced. However, pigs inoculated with the gD mutant still developed fever and respiratory signs. Additional inactivation of either gI or gI plus gE further decreased virulence for pigs. Immunohistochemical examination of infected pigs showed that a PRV gD mutant could replicate and spread transneuronally into the central nervous system (CNS). Compared with the wild-type virus, the gD mutant had infected fewer neurons of the CNS on day 2. Nevertheless, on day 3, the gD-negative PRV had infected more neurons and viral antigens were present in second- and third-order neurons in the olfactory bulb, brain stem, and medulla oblongata. In contrast, gD mutants which are unable to express either gI or gI plus gE infected a limited number of first-order neurons in the olfactory epithelium and in the trigeminal ganglion and did not spread transneuronally or infect the CNS. Thus, transsynaptic spread of PRV in pigs can occur independently of gD. Possible mechanisms of transsynaptic transport of PRV are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号