首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
We have used three polarity-sensitive fluorescence probes, 6-propionyl 2-(N,N-dimethyl-amino) naphthalene (Prodan), pyrene and 8-anilino 1-naphthalene sulphonic acid, to study their binding with erythroid and nonerythroid spectrin, using fluorescence spectroscopy. We have found that both bind to prodan and pyrene with high affinities with apparent dissociation constants (Kd) of .50 and .17?μM, for prodan, and .04 and .02?μM, for pyrene, respectively. The most striking aspect of these bindings have been that the binding stoichiometry have been equal to 1 in erythroid spectrin, both in dimeric and tetrameric form, and in tetrameric nonerythroid spectrin. From an estimate of apparent dielectric constants, the polarity of the binding site in both erythroid and nonerythroid forms have been found to be extremely hydrophobic. Thermodynamic parameters associated with such binding revealed that the binding is favored by positive change in entropy. Molecular docking studies alone indicate that both prodan and pyrene bind to the four major structural domains, following the order in the strength of binding to the Ankyrin binding domain?>?SH3 domain?>?Self-association domain?>?N-terminal domain of α-spectrin of both forms of spectrin. The binding experiments, particularly with the tetrameric nonerythroid spectrin, however, indicate more toward the self association domain in offering the unique binding site, since the binding stoichiometry have been 1 in all forms of dimeric and tetrameric spectrin, so far studied by us. Further studies are needed to characterize the hydrophobic binding sites in both forms of spectrin.  相似文献   

2.
We previously determined the solution structures of the first 156 residues of human erythroid alpha-spectrin (SpalphaI-1-156, or simply Spalpha). Spalpha consists of the tetramerization site of alpha-spectrin and associates with a model beta-spectrin protein (Spbeta) with an affinity similar to that of native alpha- and beta-spectrin. Upon alphabeta-complex formation, our previous results indicate that there is an increase in helicity in the complex, suggesting conformational change in either Spalpha or Spbeta or in both. We have now used isothermal titration calorimetry, circular dichroism, static and dynamic light scattering, and solution NMR methods to investigate properties of the complex as well as the conformation of Spalpha in the complex. The results reveal a highly asymmetric complex, with a Perrin shape parameter of 1.23, which could correspond to a prolate ellipsoid with a major axis of about five and a minor axis of about one. We identified 12 residues, five prior to and seven following the partial domain helix in Spalpha that moved freely relative to the structural domain in the absence of Spbeta but when in the complex moved with a mobility similar to that of the structural domain. Thus, it appears that the association with Spbeta induced an unstructured-to-helical conformational transition in these residues to produce a rigid and asymmetric complex. Our findings may provide insight toward understanding different association affinities of alphabeta-spectrin at the tetramerization site for erythroid and non-erythroid spectrin and a possible mechanism to understand some of the clinical mutations, such as L49F of alpha-spectrin, which occur outside the functional partial domain region.  相似文献   

3.
The bundling of the N‐terminal, partial domain helix (Helix C′) of human erythroid α‐spectrin (αI) with the C‐terminal, partial domain helices (Helices A′ and B′) of erythroid β‐spectrin (βI) to give a spectrin pseudo structural domain (triple helical bundle A′B′C′) has long been recognized as a crucial step in forming functional spectrin tetramers in erythrocytes. We have used apparent polarity and Stern–Volmer quenching constants of Helix C′ of αI bound to Helices A′ and B′ of βI, along with previous NMR and EPR results, to propose a model for the triple helical bundle. This model was used as the input structure for molecular dynamics simulations for both wild type (WT) and αI mutant L49F. The simulation output structures show a stable helical bundle for WT, but not for L49F. In WT, four critical interactions were identified: two hydrophobic clusters and two salt bridges. However, in L49F, the region downstream of Helix C′ was unable to assume a helical conformation and one critical hydrophobic cluster was disrupted. Other molecular interactions critical to the WT helical bundle were also weakened in L49F, possibly leading to the lower tetramer levels observed in patients with this mutation‐induced blood disorder.  相似文献   

4.
5.
We have investigated the organization and dynamics of the functionally important tryptophan residues of erythroid spectrin in native and denatured conditions utilizing the wavelength-selective fluorescence approach. We observed a red edge excitation shift (REES) of 4 nm for the tryptophans in the case of spectrin in its native state. This indicates that tryptophans in spectrin are localized in a microenvironment of restricted mobility, and that the regions surrounding the spectrin tryptophans offer considerable restriction to the reorientational motion of the water dipoles around the excited state tryptophans. Interestingly, spectrin exhibits a REES of 3 nm even when denatured in 8 M urea. This represents the first report of a denatured protein displaying REES. Observation of REES in the denatured state implies that some of the structural and dynamic features of this microenvironment around the spectrin tryptophans are retained even when the protein is denatured. Fluorescence quenching data of denatured spectrin support this conclusion. In addition, we have deduced the organization and dynamics of the hydrophobic binding site of the polarity-sensitive fluorescent probe PRODAN that binds erythroid spectrin with high affinity. When bound to spectrin, PRODAN exhibits a REES of 9 nm. Because PRODAN binds to a hydrophobic site in spectrin, such a result would directly imply that this region of spectrin offers considerable restriction to the reorientational motion of the solvent dipoles around the excited state fluorophore. The results of our study could provide vital insight into the role of tryptophans in the stability and folding of spectrin.  相似文献   

6.
Rat bone marrow cell populations, containing different proportions of erythroid cells, have been fractionated by counter-current distribution in the non-charge-sensitive dextran/polyethyleneglycol two-phase systems on the basis of hydrophobic cell surface properties. Cell fractions with a low distribution coefficient, which contain non-erythroid cells and early erythoblasts, showed a low transferrin binding capacity and a low haemoglobin/cell ratio whereas cell fractions with a high distribution coefficient, which contain intermediate-late erythroblasts and mature red cells, showed an elevated transferrin binding capacity and the highest haemoglobin/cell ratio. These results support transferrin binding capacity as a good marker parameter for the erythroid bone marrow cell differentiation and maturation processes.  相似文献   

7.
自然保护区如何设置才能够最大程度保护生物多样性, 是保护生物学的研究热点; 阐明beta多样性特征、组分格局及其影响因素是保护生物学的重要基础。本研究选取小兴安岭凉水国家级自然保护区不同功能区(核心区、缓冲区、实验区)及毗邻地区(保护区外)共80块样方作为研究对象, 调查每块样方的保护位置(经纬度、海拔、坡位、坡度、坡向)和群落结构(郁闭度、林龄、乔木树高、胸径、灌木树高、地径), 并采集0-20 cm土壤样品, 测定土壤理化性质(有机碳、全氮、pH值、电导率、含水量、容重)。将样方间的beta多样性分解为物种周转和物种多度差异两种组分, 通过Mantel分析、冗余分析和方差分解分析解析非生物因子(地理地形、保护强度、土壤因子)和生物因子(群落结构)对beta多样性及其组分的影响。结果表明: (1)乔、灌、草3层中, 物种周转组分对于beta多样性的贡献均占主导地位(65%-73%), 物种多度差异贡献较小。(2) Mantel检验结果表明, 乔、灌、草3层beta多样性及其组分与地理地形指标显著相关的因子最多; 土壤因子只对乔木层和灌木层beta多样性及组分有影响, 对草本层影响不大。其中坡位、坡度、乔木树高和保护强度均与保护区乔、灌、草3层beta多样性显著正相关(P < 0.05)。(3)植物整体beta多样性受地理地形影响最大, 但存在乔、灌、草差异。乔木层beta多样性受生物因子影响最大; 灌木层的土壤因子解释力分别为地理地形和生物因子的2倍; 而草本层主要受地理地形的影响, 其解释力分别是土壤和生物因子的26倍和3倍。乔木胸径对植物beta多样性差异具有最大的解释作用。本研究结果表明, 未来保护区设置需要根据保护植物的类型, 选择适当的林分结构、土壤和地理地形等, 以增强保护区植物多样性保护的效果。  相似文献   

8.
The loci of the porcine tumour necrosis factor genes, alpha (TNFA) and beta (TNFB), have been chromosomally assigned by radioactive in situ hybridization. The genomic probes for TNFA and TNFB yielded signals above 7p11-q11, a region that has been shown earlier to carry the porcine major histocompatibility locus (SLA). These mapping data along with preliminary molecular studies suggest a genomic organization of the SLA that is similar to that of human and murine major histocompatibility complexes.  相似文献   

9.
Using molecular dynamics simulations in explicit solvent, we investigated the behavior of a 50-bp DNA sequence containing the 434 bacteriophage operators OR1 and OR2 separated by an 8-bp spacer. Two simulations of 1 ns each were carried out, with DNA alone and with DNA complexed to dimers of the R1-69 DNA binding domain of the phage 434 cI repressor protein at the OR1 and OR2 sites. Strong correlations among average structural parameters are observed between our simulations and available experimental data for the bound OR1/OR2 subsites. In the free state, some differences appear between the three relevant fragments (OR1, the spacer, and OR2). Unbound OR1 exhibits a large, shallow major groove into which the base atoms protrude and is also bent toward the major groove. This structure is maintained because structural fluctuations are weak. Unbound OR2 resembles canonical B-DNA although the structural parameters show greater fluctuations, essentially due to a malleable step (the innermost CpA/TpG), absent in OR1. Complexation with the proteins slightly alters the base positions but strongly modifies the sugar and backbone motions. The most crucial repressor effects are changes in the flexibility of the OR1/OR2 sites. Structural fluctuations are enhanced for OR1, conferring a favorable energetic contribution to the OR1 binding, whereas they are reduced for OR2. Therefore, both structural and dynamic properties of DNA suggest OR1 is the most attractive site for the repressor, which may explain the different binding association constants observed for the OR1 and OR2 sites. Finally, we also investigated the impact of the protein on the DNA backbone dynamics and find that direct or indirect interactions facilitate the DNA structural variations required for achieving complementarity with the protein.  相似文献   

10.
11.
β‐Cardiotoxin is a novel member of the snake venom three‐finger toxin (3FTX) family. This is the first exogenous protein to antagonize β‐adrenergic receptors and thereby causing reduction in heart rates (bradycardia) when administered into animals, unlike the conventional cardiotoxins as reported earlier. 3FTXs are stable all β‐sheet peptides with 60–80 amino acid residues. Here, we describe the three‐dimensional crystal structure of β‐cardiotoxin together with the identification of a molten globule intermediate in the unfolding pathway of this protein. In spite of the overall structural similarity of this protein with conventional cardiotoxins, there are notable differences observed at the loop region and in the charge distribution on the surface, which are known to be critical for cytolytic activity of cardiotoxins. The molten globule intermediate state present in the thermal unfolding pathway of β‐cardiotoxin was however not observed during the chemical denaturation of the protein. Interestingly, circular dichroism (CD) and NMR studies revealed the presence of α‐helical secondary structure in the molten globule intermediate. These results point to substantial conformational plasticity of β‐cardiotoxin, which might aid the protein in responding to the sometimes conflicting demands of structure, stability, and function during its biological lifetime.  相似文献   

12.
Worldwide structural genomics projects are increasing structure coverage of sequence space but have not significantly expanded the protein structure space itself (i.e., number of unique structural folds) since 2007. Discovering new structural folds experimentally by directed evolution and random recombination of secondary-structure blocks is also proved rarely successful. Meanwhile, previous computational efforts for large-scale mapping of protein structure space are limited to simple model proteins and led to an inconclusive answer on the completeness of the existing observed protein structure space. Here, we build novel protein structures by extending naturally occurring circular (single-loop) permutation to multiple loop permutations (MLPs). These structures are clustered by structural similarity measure called TM-score. The computational technique allows us to produce different structural clusters on the same naturally occurring, packed, stable core but with alternatively connected secondary-structure segments. A large-scale MLP of 2936 domains from structural classification of protein domains reproduces those existing structural clusters (63%) mostly as hubs for many nonredundant sequences and illustrates newly discovered novel clusters as islands adopted by a few sequences only. Results further show that there exist a significant number of novel potentially stable clusters for medium-size or large-size single-domain proteins, in particular, > 100 amino acid residues, that are either not yet adopted by nature or adopted only by a few sequences. This study suggests that MLP provides a simple yet highly effective tool for engineering and design of novel protein structures (including naturally knotted proteins). The implication of recovering new-fold targets from critical assessment of structure prediction techniques (CASP) by MLP on template-based structure prediction is also discussed. Our MLP structures are available for download at the publication page of the Web site http://sparks.informatics.iupui.edu.  相似文献   

13.
Azospirillum brasilense glutamate synthase (GltS) is a complex iron-sulfur flavoprotein whose catalytically active alphabeta protomer (alpha subunit, 162kDa; beta subunit, 52.3 kDa) contains one FAD, one FMN, one [3Fe-4S](0,+1), and two [4Fe-4S](+1,+2) clusters. The structure of the alpha subunit has been determined providing information on the mechanism of ammonia transfer from L-glutamine to 2-oxoglutarate through a 30 A-long intramolecular tunnel. On the contrary, details of the electron transfer pathway from NADPH to the postulated 2-iminoglutarate intermediate through the enzyme flavin co-factors and [Fe-S] clusters are largely indirect. To identify the location and role of each one of the GltS [4Fe-4S] clusters, we individually substituted the four cysteinyl residues forming the first of two conserved C-rich regions at the N-terminus of GltS beta subunit with alanyl residues. The engineered genes encoding the beta subunit variants (and derivatives carrying C-terminal His6-tags) were co-expressed with the wild-type alpha subunit gene. In all cases the C/A substitutions prevented alpha and beta subunits association to yield the GltS alphabeta protomer. This result is consistent with the fact that these residues are responsible for the formation of glutamate synthase [4Fe-4S](+1,+2) clusters within the N-terminal region of the beta subunit, and that these clusters are implicated not only in electron transfer between the GltS flavins, but also in alphabeta heterodimer formation by structuring an N-terminal [Fe-S] beta subunit interface subdomain, as suggested by the three-dimensional structure of dihydropyrimidine dehydrogenase, an enzyme containing an N-terminal beta subunit-like domain.  相似文献   

14.
Several plants have traditionally been used since antiquity to treat various gastroenteritis and respiratory symptoms similar to COVID-19 outcomes. The common symptoms of COVID-19 include fever or chills, cold, cough, flu, headache, diarrhoea, tiredness/fatigue, sore throat, loss of taste or smell, asthma, shortness of breath, or difficulty breathing, etc. This study aims to find out the plants and plant-derived products which are being used by the COVID-19 infected patients in Bangladesh and how those plants are being used for the management of COVID-19 symptoms. In this study, online and partially in-person survey interviews were carried out among Bangladeshi respondents. We selected Bangladeshi COVID-19 patients who were detected Coronavirus positive (+) by RT-PCR nucleic acid test and later recovered. Furthermore, identified plant species from the surveys were thoroughly investigated for safety and efficacy based on the previous ethnomedicinal usage reports. Based on the published data, they were also reviewed for their significant potentialities as antiviral, anti-inflammatory, and immunomodulatory agents. We explored comprehensive information about a total of 26 plant species, belonging to 23 genera and 17 different botanical families, used in COVID-19 treatment as home remedies by the respondents. Most of the plants and plant-derived products were collected directly from the local marketplace. According to our survey results, greatly top 5 cited plant species measured as per the highest RFC value are Camellia sinensis (1.0) > Allium sativum (0.984) > Azadirachta indica (0.966) > Zingiber officinale (0.966) > Syzygium aromaticum (0.943). Previously published ethnomedicinal usage reports, antiviral, anti-inflammatory, and immunomodulatory activity of the concerned plant species also support our results. Thus, the survey and review analysis simultaneously reveals that these reported plants and plant-derived products might be promising candidates for the treatment of COVID-19. Moreover, this study clarifies the reported plants for their safety during COVID-19 management and thereby supporting them to include in any future pre-clinical and clinical investigation for developing herbal COVID-19 therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号