首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiological studies suggest that cigarette smoke carcinogens are cofactors which synergize with human papillomavirus (HPV) to increase the risk of cervical cancer progression. Benzo[a]pyrene (BaP), a major carcinogen in cigarette smoke, is detected in the cervical mucus and may interact with HPV. Exposure of cervical cells to high concentrations of BaP resulted in a 10-fold increase in HPV type 31 (HPV31) viral titers, whereas treatment with low concentrations of BaP resulted in an increased number of HPV genome copies but not an increase in virion morphogenesis. BaP exposure also increased HPV16 and HPV18 viral titers. Overall, BaP modulation of the HPV life cycle could potentially enhance viral persistence, host tissue carcinogenesis, and permissiveness for cancer progression.  相似文献   

2.
3.
4.
Cai Y  Liu Y  Zhang X 《Journal of virology》2007,81(2):446-456
We previously demonstrated that infection of cultured cells with murine coronavirus mouse hepatitis virus (MHV) resulted in activation of the mitogen-activated protein kinase (Raf/MEK/ERK) signal transduction pathway (Y. Cai et al., Virology 355:152-163, 2006). Here we show that inhibition of the Raf/MEK/ERK signaling pathway by the MEK inhibitor UO126 significantly impaired MHV progeny production (a reduction of 95 to 99% in virus titer), which correlated with the phosphorylation status of ERK1/2. Moreover, knockdown of MEK1/2 and ERK1/2 by small interfering RNAs suppressed MHV replication. The inhibitory effect of UO126 on MHV production appeared to be a general phenomenon since the effect was consistently observed in all six different MHV strains and in three different cell types tested; it was likely exerted at the postentry steps of the virus life cycle because the virus titers were similarly inhibited from infected cells treated at 1 h prior to, during, or after infection. Furthermore, the treatment did not affect the virus entry, as revealed by the virus internalization assay. Metabolic labeling and reporter gene assays demonstrated that translation of cellular and viral mRNAs appeared unaffected by UO126 treatment. However, synthesis of viral genomic and subgenomic RNAs was severely suppressed by UO126 treatment, as demonstrated by a reduced incorporation of [3H]uridine and a decrease in chloramphenicol acetyltransferase (CAT) activity in a defective-interfering RNA-CAT reporter assay. These findings indicate that the Raf/MEK/ERK signaling pathway is involved in MHV RNA synthesis.  相似文献   

5.
6.
7.
The clinical literature strongly suggests that bone healing in cigarette smokers is impaired. Since cigarette smoke (CS) contains numerous polycyclic aromatic hydrocarbons (PAHs), and since dioxins impair bone formation in vivo via the Aryl Hydrocarbon Receptor (AHR), we investigated the impact of PAH/AHR signaling on chondrogenesis and on healing in a mouse tibial fracture model. We established that CS activates AHR signaling in fractures by up-regulating the AHR target gene cytochrome p4501A1 (Cyp1A1). For in vitro studies, we employed the mouse limb bud micromass chondrogenesis model. After confirming that chondrocytes express AHR during differentiation, we treated cells with a prototypical PAH found in CS, benzo(a)pyrene (BaP), or cigarette smoke extract (CSE). Both BaP and CSE strongly inhibited chondrogenesis in mesenchymal cells generated from E11 limb buds, with BaP also accelerating chondrocyte hypertrophy in cultures generated from E12 limb buds. Detection of DNA adducts in the BaP-treated cultures suggests that the distinct phenotypic effects of BaP may be due to the formation of reactive metabolites. Blockade of AHR signaling with the AHR antagonist MNF reverses the effects of BaP, but not CSE, suggesting that CSE inhibition of chondrogenesis is AHR-independent. Correlating with these results, tibial fracture calluses from BaP-treated mice were smaller and contained less mineralized tissue than vehicle controls. Overall, BaP is identified as a potent inhibitor of chondrogenesis in vitro with correlated effects on fracture healing similar to those of CS itself, suggesting a basis for PAHs as key compounds in the influence of CS on fracture repair.  相似文献   

8.
9.
10.
Growth plate abnormalities, associated with impaired hypertrophic chondrocyte apoptosis, are observed in humans and animals with abnormalities of vitamin D action and renal phosphate reabsorption. Low circulating phosphate levels impair hypertrophic chondrocyte apoptosis, whereas treatment of these cells with phosphate activates the mitochondrial apoptotic pathway. Because phosphate-mediated apoptosis of chondrocytes is differentiation-dependent, studies were performed to identify factors that contribute to hypertrophic chondrocyte apoptosis. An increase in the percentage of cells with low mitochondrial membrane potential, evaluated by JC-1 fluorescence, was observed during hypertrophic differentiation of primary murine chondrocytes in culture. This percentage was further increased by treatment of hypertrophic, but not proliferative, chondrocytes with phosphate. Phosphate-mediated apoptosis was observed as early as 30 min post-treatment and was dependent upon Erk1/2 phosphorylation. Inhibition of Erk1/2 phosphorylation in vivo confirmed an important role for this signaling pathway in regulating hypertrophic chondrocyte apoptosis in growing mice. Murine embryonic metatarsals cultured under phosphate-restricted conditions demonstrated a 2.5-fold increase in parathyroid hormone-related protein mRNA expression accompanied by a marked attenuation in phospho-Erk immunoreactivity in hypertrophic chondrocytes. Thus, these investigations point to an important role for phosphate in regulating mitochondrial membrane potential in hypertrophic chondrocytes and growth plate maturation by the parathyroid hormone-related protein signaling pathway.  相似文献   

11.
12.
13.
High-risk human papillomaviruses (HPVs) are small nonenveloped DNA viruses with a strict tropism for squamous epithelium. The viruses are causative agents of cervical cancer and some head and neck cancers, but their differentiation-dependent life cycles have made them difficult to study in simple cell culture. Thus, many aspects of early HPV infection remain mysterious. We recently showed the high-risk HPV type 31 (HPV31) enters its natural host cell type via caveola-dependent endocytosis, a distinct mechanism from that of the closely related HPV16 (Smith et al., J. Virol. 81:9922-9931, 2007). Here, we determined the downstream trafficking events after caveolar entry of HPV31 into human keratinocytes. After initial plasma membrane binding, HPV31 associates with caveolin-1 and transiently localizes to the caveosome before trafficking to the early endosome and proceeding through the endosomal pathway. Caveosome-to-endosome transport was found to be Rab5 GTPase dependent. Although HPV31 capsids were observed in the lysosome, Rab7 GTPase was dispensable for HPV31 infection, suggesting that viral genomes escape from the endosomal pathway prior to Rab7-mediated capsid transport. Consistent with this, the acidic pH encountered by HPV31 within the early endosomal pathway induces a conformational change in the capsid resulting in increased DNase susceptibility of the viral genome, which likely aids in uncoating and/or endosomal escape. The entry and trafficking route of HPV31 into human keratinocytes represents a unique viral pathway by which the virions use caveolar entry to eventually access a low-pH site that appears to facilitate endosomal escape of genomes.  相似文献   

14.
Benzo(a)pyrene (BaP) is an endocrine-disrupting pollutant present in various aspects of daily life, and studies have demonstrated that BaP exerts reproductive toxicity. We previously showed that BaP damages endometrial morphology and decreases the number of implantation sites in early pregnant mice, but the mechanisms underlying these effects remain unclear. The endometrial function is crucial for implantation, which is associated with endometrial cell apoptosis. In this study, we focused on the effect of BaP on endometrial cell apoptosis and the role of WNT signaling during this process. Pregnant mice were gavaged with corn oil (control group) or 0.2 mg·kg−1·day −1 BaP (treatment group) from Days 1 to 6 of pregnancy. BaP impaired endometrial function by decreasing the expression of HOXA10 and BMP2, two markers of receptivity and decidualization. WNT5A and β-catenin were activated in the BaP group. BaP affected the expression of apoptosis-related proteins and inhibited the apoptosis of endometrial stromal cells. In vitro, human endometrial stromal cells (HESCs) were treated with different concentrations of BaP (dimethyl sulfoxide (DMSO); 5, 10 µM). WNT5A and β-catenin were also upregulated in the BaP treatment group. HESC apoptosis was restrained by BaP. Inhibiting WNT5A by SFRP5 partially restored the effect of BaP on apoptosis. In summary, these results suggested that BaP exposure during early pregnancy activates WNT5A/β-catenin signaling pathway, which inhibits the endometrial cell apoptosis and potentially destroys endometrial function.  相似文献   

15.
Thiazolidinediones (TZDs) represent an interesting treatment of type 2 diabetes mellitus. However, adverse effects such as heart problems and bone fractures have already been reported. Previously, we reported that pioglitazone and rosiglitazone induce osteocyte apoptosis and sclerostin up-regulation; however, the molecular mechanisms leading to such effects are unknown. In this study, we found that TZDs rapidly activated Erk1/2 and p38. These activations were mediated through Ras proteins and GPR40, a receptor expressed on the surface of osteocytes. Activation of this pathway led only to osteocyte apoptosis but not sclerostin up-regulation. On the other hand, TZDs were capable of activating peroxisome proliferator-activated receptor-γ, and activation of this signaling pathway led to sclerostin up-regulation but not osteocyte apoptosis. This study demonstrates two distinct signaling pathways activated in osteocytes in response to TZDs that could participate in the observed increase in fractures in TZD-treated patients.  相似文献   

16.
17.
Insulin-like growth factor-I (IGF-I) may play an important role in the development of renal hypertrophy. In this study we determined the effect of IGF-I on cultured mesangial cells (MCs) and examined activation of key signaling pathways. IGF-I induced hypertrophy as determined by an increase in cell size and an increase in protein to DNA ratio and increased accumulation of extracellular matrix (ECM) proteins. IGF-I also activated both Erk1/Erk2 MAPK and phosphatidylinositol 3-kinase (PI3K) in MCs. Inhibition of either MAPK or PI3K, however, had no effect on IGF-I-induced hypertrophy or ECM production. Next, we examined the effect of IGF-I on activation of the calcium-dependent phosphatase calcineurin. IGF-I treatment stimulated calcineurin activity and increased the protein levels of calcineurin and the calcineurin binding protein, calmodulin. Cyclosporin A, an inhibitor of calcineurin, blocked both IGF-I-mediated hypertrophy and up-regulation of ECM. In addition, calcineurin resulted in sustained Akt activation, indicating possible cross-talk with other signaling pathways. Finally, IGF-I treatment resulted in the calcineurindependent nuclear localization of NFATc1. Therefore, IGF-I induces hypertrophy and increases ECM accumulation in MCs. IGF-I-mediated hypertrophy is associated with activation of Erk1/Erk2 MAPK and PI3K but does not require either of these pathways. Instead, IGF-I mediates hypertrophy via a calcineurin-dependent pathway.  相似文献   

18.
Galpha-interacting protein (GAIP) is a regulator of G protein signaling (RGS) that accelerates the rate of GTP hydrolysis by the alpha-subunit of the trimeric G(i3) protein. Both proteins are part of a signaling pathway that controls lysosomal-autophagic catabolism in human colon cancer HT-29 cells. Here we show that GAIP is phosphorylated by an extracellular signal-regulated (Erk1/2) MAP kinase-dependent pathway sensitive to amino acids, MEK1/2 (PD098059), and protein kinase C (GF109203X) inhibitors. An in vitro phosphorylation assay demonstrates that Erk2-dependent phosphorylation of GAIP stimulates its GTPase-activating protein activity toward the Galpha(i3) protein (k = 0.187 +/- 0.001 s(-)(1), EC(50) = 1.12 +/- 0.10 microm) when compared with unphosphorylated recombinant GAIP (k = 0.145 +/- 0.003 s(-)(1), EC(50) = 3.16 +/- 0. 12 microm) or to GAIP phosphorylated by other Ser/Thr protein kinases (protein kinase C, casein kinase II). This stimulation and the phosphorylation of GAIP by Erk2 were abrogated when serine at position 151 in the RGS domain was substituted by an alanine residue using site-directed mutagenesis. Furthermore, the lysosomal-autophagic pathway was not stimulated in S151A-GAIP mutant-expressing cells when compared with wild-type GAIP-expressing cells. These results demonstrate that the GTPase-activating protein activity of GAIP is stimulated by Erk2 phosphorylation. They also suggested that Erk1/2 and GAIP are engaged in the signaling control of a major catabolic pathway in intestinal derived cells.  相似文献   

19.
We report a novel mechanism for dopamine D(1) receptor (D(1) R)-mediated extracellular signal-regulated kinases (Erk) activation in rat striatum. Erk signaling depends on phosphorylation and dephosphorylation events mediated by specific kinases and phosphatases. The tyrosine phosphatase Shp-2, that is required for Erk activation by tyrosine kinase receptors, has been recently shown to regulate signaling downstream of few G protein-coupled receptors. We show that the D(1) R interacts with Shp-2, that D(1) R stimulation results in Shp-2 tyrosine phosphorylation and activation in primary striatal neuronal cultures and that D(1) R/Shp-2 interaction is required for transmitting D(1) R-dependent signaling to Erk1/2 activation. D(1) R-mediated Erk1/2 phosphorylation in cultured striatal neurons is in fact abolished by over-expression of the inactive Shp-2(C/S) mutant and by small interfering RNA-induced Shp-2 silencing. Moreover, by using selective inhibitors we show that both D(1) R-induced Shp-2 activation and Erk1/2 phosphorylation are dependent on the cyclic AMP/protein kinase A pathway and require Src. These results, which were substantiated also in transfected human embryonic kidney 293 cells, provide a novel mechanism by which to converge D(1) R signaling to the Erk pathway and suggest that Shp-2 or the D(1) R/Shp-2 interface could represent a potential drug target for disorders of dopamine transmission involving malfunctioning of D(1) R signaling.  相似文献   

20.
We have shown previously that cytoskeletal reorganization (CSR) induced by pharmacological reagents such as colchicine or cytochalasins can up-regulate the urokinase-type plasminogen activator (uPA) gene via the Ras/Erk signaling pathway. In this present study using the small interfering RNA technique, we have found that ShcA adapter proteins play a rather active role in CSR-induced Erk activation, contrary to their mostly redundant role in other signaling pathways, e.g. growth factor-induced Erk activation, where Grb2 can bind directly to the receptor tyrosine kinase and activate Erk in the absence of ShcA. ShcA knockdown abolished CSR-induced activation of both Erk and the uPA promoter. Expression of small interfering RNA-escaping silent mutants of p52 or p46 but not p66 ShcA isoform efficiently rescued CSR-induced Erk activation. Moreover, we have shown that phosphorylation of either Tyr-239/Tyr-240 or Tyr-313 in p52(ShcA) can mediate CSR-induced Erk activation equally well. In a quest for molecules upstream of ShcA in this signaling, we found that CSR-induced ShcA tyrosine phosphorylation, its association with Grb2, Erk activation, and uPA gene expression were all dependent on Rho kinase, p38 mitogen-activated protein kinase, and Src. In summary, we have found a novel, non-redundant role for ShcA in contrast to its redundant role in many other signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号