首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Integration of diverse environmental and endogenous signals to coordinately regulate growth, development, and defense is essential for plants to survive in their natural habitat. The hormonal signals gibberellin (GA) and jasmonate (JA) antagonistically and synergistically regulate diverse aspects of plant growth, development, and defense. GA and JA synergistically induce initiation of trichomes, which assist seed dispersal and act as barriers to protect plants against insect attack, pathogen infection, excessive water loss, and UV irradiation. However, the molecular mechanism underlying such synergism between GA and JA signaling remains unclear. In this study, we revealed a mechanism for GA and JA signaling synergy and identified a signaling complex of the GA pathway in regulation of trichome initiation. Molecular, biochemical, and genetic evidence showed that the WD-repeat/bHLH/MYB complex acts as a direct target of DELLAs in the GA pathway and that both DELLAs and JAZs interacted with the WD-repeat/bHLH/MYB complex to mediate synergism between GA and JA signaling in regulating trichome development. GA and JA induce degradation of DELLAs and JASMONATE ZIM-domain proteins to coordinately activate the WD-repeat/bHLH/MYB complex and synergistically and mutually dependently induce trichome initiation. This study provides deep insights into the molecular mechanisms for integration of different hormonal signals to synergistically regulate plant development.  相似文献   

3.
4.
To investigate the genetic mechanisms regulating the transition from the vegetative to reproductive growth in Arabidopsis, double mutants between three different early-flowering mutants, early flowering 1-1, 2-1, 3-1, (elf 1-1, 2-1, 3-1) and five different late-flowering mutants, gi-1, ft-1, fwa-1, ld-1, and fca-9, were constructed and phenotypes analyzed. Double mutants in all combinations displayed the late-flowering phenotypes which resembled their respective late-flowering parents in both flowering time and the number of vegetative leaves produced. The results indicate that five late-flowering mutants are epistatic to all three early-flowering mutants tested here. This epistatic relationship suggests that ELF1, ELF2, and ELF3 genes function upstream of these five late-flowering genes no matter if they are functioning in autonomous or photoperiod pathways. These three early-flowering genes may negatively modify the activity of most late-flowering genes to influence the time of the vegetative-to-reproductive transition in Arabidopsis.  相似文献   

5.
BACKGROUND: Organizing signals such as Sonic hedgehog are thought to specify neuronal subtype identity by regulating the expression of homeodomain proteins in progenitors of the embryonic neural tube. One of these, Nkx2.2, is necessary and sufficient for the development of V3 interneurons. RESULTS: We report that Olig genes, encoding basic helix-loop-helix (bHLH) proteins, are expressed in a subset of Nkx2.2 progenitors before the establishment of interneurons and oligodendroglial precursors. Gain-of-function analysis in transgenic mouse embryos indicates that Olig genes specifically inhibit the establishment of Sim1-expressing V3 interneurons. Moreover, coexpression of Olig2 with Nkx2.2 in the chick neural tube generated cells expressing Sox10, a marker of oligodendroglial precursors. Colocalization of Olig and Nkx2.2 proteins at the dorsal extent of the Nkx2.2 expression domain is consistent with regulatory interactions that define the potential of progenitor cells in the border region. CONCLUSIONS: Interactions between homeodomain and Olig bHLH proteins evidently regulate neural cell fate acquisition and diversification in the ventral neural tube. In particular, interactions between Olig and Nkx2.2 proteins inhibit V3 interneuron development and promote the formation of alternate cell types, including those expressing Sox10.  相似文献   

6.
7.
In-depth analysis of protein-protein interaction specificities of the MYB protein family of Arabidopsis thaliana revealed a conserved amino acid signature ([DE]Lx(2)[RK]x(3)Lx(6)Lx(3)R) as the structural basis for interaction between MYB and R/B-like BHLH proteins. The motif has successfully been used to predict new MYB/BHLH interactions for A. thaliana proteins, it allows to discriminate between even closely related MYB proteins and it is conserved amongst higher plants. In A. thaliana, the motif is shared by fourteen R2R3 MYB proteins and six 1R MYB proteins. It is located on helices 1 and 2 of the R3 repeat and forms a characteristic surface-exposed pattern of hydrophobic and charged residues. Single-site mutation of any amino acid of the signature impairs the interaction. Two particular amino acids have been determined to account for most of the interaction stability. Functional specificity of MYB/BHLH complexes was investigated in vivo by a transient DFR promoter activation assay. Residues stabilizing the MYB/BHLH interaction were shown to be critical for promoter activation. By virtue of proved and predicted interaction specificities, this study provides a comprehensive survey of the MYB proteins that interact with R/B-like BHLH proteins potentially involved in the TTG1-dependent regulatory interaction network. The results are discussed with respect to multi-functionality, specificity and redundancy of MYB and BHLH protein function.  相似文献   

8.
Phytochromes regulate light- and sucrose-dependent anthocyanin synthesis and accumulation in many plants. Mesophyll-specific phyA alone has been linked to the regulation of anthocyanin accumulation in response to far-red light in Arabidopsis thaliana. However, multiple mesophyll-localized phytochromes were implicated in the photoregulation of anthocyanin accumulation in red-light conditions. Here, we report a role for mesophyll-specific phyA in blue-light-dependent regulation of anthocyanin levels and novel roles for individual phy isoforms in the regulation of anthocyanin accumulation under red illumination. These results provide new insight into spatial- and isoform-specific regulation of pigmentation by phytochromes in A. thaliana.Key words: anthocyanin, Arabidopsis, photomorphogenesis, photoreceptor, phytochrome  相似文献   

9.
10.
The major anthocyanin in the leaves and stems of Arabidopsis thaliana has been isolated and shown to be cyanidin 3-O-[2-O(2-O-(sinapoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-p-coumaroyl-beta-D-glucopyranoside] 5-O-[6-O-(malonyl) beta-D-glucopyranoside]. This anthocyanin is a glucosylated version of one of the anthocyanins found in the flowers of the closely related Matthiola incana.  相似文献   

11.
Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7 , reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.  相似文献   

12.
For the first time in Arabidopsis thaliana, this work proposes the identification of quantitative trait loci (QTLs) associated with leaf senescence and stress response symptoms such as yellowing and anthocyanin-associated redness. When Arabidopsis plants were cultivated under low nitrogen conditions, we observed that both yellowing of the old leaves of the rosette and whole rosette redness were promoted. Leaf yellowing is a senescence symptom related to chlorophyll breakdown. Redness is a symptom of anthocyanin accumulation related to whole plant ageing and nutrient limitation. In this work, Arabidopsis is used as a model system to dissect the genetic variation of these parameters by QTL mapping in the 415 recombinant inbred lines of the Bay-0xShahdara population. Fifteen new QTLs and two epistatic interactions were described in this study. The yellowing of the rosette, estimated by visual notation and image processing, was controlled by four and five QTLs, respectively. The visual estimation of redness allowed us to detect six QTLs among which the major one explained 33% of the total variation. Two main QTLs were confirmed in near-isogenic lines (heterogenous inbred family; HIF), thus confirming the relevance of the visual notation of these traits. Co-localizations between QTLs for leaf yellowing, redness and nitrogen use efficiency described in a previous publication indicate complex interconnected pathways involved in both nitrogen management and senescence- and stress-related processes. No co-localization between QTLs for leaf yellowing and redness has been found, suggesting that the two characters are genetically independent.  相似文献   

13.
14.
To investigate the mechanisms regulating the initiation of floral development in Arabidopsis, a construct containing beta-glucuronidase (GUS) gene driven by APETALA1 promoter (AP1::GUS) was introduced into emf fwa and emf ft double mutants. GUS activity was strongly detected on shoot meristem of emf1-1 single mutants harboring AP1::GUS construct just 5 d after germination. By contrast, GUS activity was undetectable on emf1-1 fwa-1, emf1-1 ft-1, emf2-1 fwa-1, emf2-3 fwa-1 and emf2-3 ft-1 double mutants harboring AP1::GUS construct 10 d after germination. GUS activity was only weakly detected on the apical meristem of 20-day-old emf1-1 fwa-1 and emf2-1 fwa-1 seedlings. During this time, only sessile leaves were produced. Further analysis indicated that AP1 was strongly expressed in 10-day-old emf1-1 and emf2-1 single mutants. Its expression was significantly reduced in all emf1-1 or emf2-1 late-flowering double mutants tested. Similar to AP1, the expression of LEAFY (LFY) was also high in emf1-1 and emf2-1 single mutants and reduced in emf1-1 or emf2-1 late-flowering double mutants. Our results indicate that the precocious expression of AP1 and LFY is dependent not only on the low EMF and FWA activities but also on the expression of most of the late-flowering genes such as FT, FCA, FE, CO and GI. These data also reveal that most late-flowering genes may function downstream of EMF or in pathways distinct from EMF to activate genes specified floral meristem identity during shoot maturation in Arabidopsis.  相似文献   

15.
16.
Sugar-induced anthocyanin accumulation has been observed in many plant species. We observed that sucrose (Suc) is the most effective inducer of anthocyanin biosynthesis in Arabidopsis (Arabidopsis thaliana) seedlings. Other sugars and osmotic controls are either less effective or ineffective. Analysis of Suc-induced anthocyanin accumulation in 43 Arabidopsis accessions shows that considerable natural variation exists for this trait. The Cape Verde Islands (Cvi) accession essentially does not respond to Suc, whereas Landsberg erecta is an intermediate responder. The existing Landsberg erecta/Cvi recombinant inbred line population was used in a quantitative trait loci analysis for Suc-induced anthocyanin accumulation (SIAA). A total of four quantitative trait loci for SIAA were identified in this way. The locus with the largest contribution to the trait, SIAA1, was fine mapped and using a candidate gene approach, it was shown that the MYB75/PAP1 gene encodes SIAA1. Genetic complementation studies and analysis of a laboratory-generated knockout mutation in this gene confirmed this conclusion. Suc, in a concentration-dependent way, induces MYB75/PAP1 mRNA accumulation. Moreover, MYB75/PAP1 is essential for the Suc-mediated expression of the dihydroflavonol reductase gene. The SIAA1 locus in Cvi probably is a weak or loss-of-function MYB75/PAP1 allele. The C24 accession similarly shows a very weak response to Suc-induced anthocyanin accumulation encoded by the same locus. Sequence analysis showed that the Cvi and C24 accessions harbor mutations both inside and downstream of the DNA-binding domain of the MYB75/PAP1 protein, which most likely result in loss of activity.  相似文献   

17.
18.
In the degradative pathway, the progression of cargos through endosomal compartments involves a series of fusion and maturation events. The HOPS (homotypic fusion and protein sorting) complex is part of the machinery that promotes the progression from early to late endosomes and lysosomes by regulating the exchange of small GTPases. We report that an interaction between subunits of the HOPS complex and the ERM (ezrin, radixin, moesin) proteins is required for the delivery of EGF receptor (EGFR) to lysosomes. Inhibiting either ERM proteins or the HOPS complex leads to the accumulation of the EGFR into early endosomes, delaying its degradation. This impairment in EGFR trafficking observed in cells depleted of ERM proteins is due to a delay in the recruitment of Rab7 on endosomes. As a consequence, the maturation of endosomes is perturbed as reflected by an accumulation of hybrid compartments positive for both early and late endosomal markers. Thus, ERM proteins represent novel regulators of the HOPS complex in the early to late endosomal maturation.  相似文献   

19.
20.
Pericentrin is an integral centrosomal component that anchors regulatory and structural molecules to centrosomes. In a yeast two-hybrid screen with pericentrin we identified chromodomain helicase DNA-binding protein 4 (CHD4/Mi2beta). CHD4 is part of the multiprotein nucleosome remodeling deacetylase (NuRD) complex. We show that many NuRD components interacted with pericentrin by coimmunoprecipitation and that they localized to centrosomes and midbodies. Overexpression of the pericentrin-binding domain of CHD4 or another family member (CHD3) dissociated pericentrin from centrosomes. Depletion of CHD3, but not CHD4, by RNA interference dissociated pericentrin and gamma-tubulin from centrosomes. Microtubule nucleation/organization, cell morphology, and nuclear centration were disrupted in CHD3-depleted cells. Spindles were disorganized, the majority showing a prometaphase-like configuration. Time-lapse imaging revealed mitotic failure before chromosome segregation and cytokinesis failure. We conclude that pericentrin forms complexes with CHD3 and CHD4, but a distinct CHD3-pericentrin complex is required for centrosomal anchoring of pericentrin/gamma-tubulin and for centrosome integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号