首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cattle trial using artificially inoculated calves was conducted to determine the effect of the addition of colicinogenic Escherichia coli strains capable of producing colicin E7 (a 61-kDa DNase) to feed on the fecal shedding of serotype O157:H7. The experiment was divided into three periods. In period 1, which lasted 24 days, six calves were used as controls, and eight calves received 10(7) CFU of E. coli (a mixture of eight colicinogenic E. coli strains) per g of feed. Both groups were orally inoculated with nalidixic acid-resistant E. coli O157:H7 strains 7 days after the treatment started. In periods 2 and 3, the treatment and control groups were switched, and the colicinogenic E. coli dose was increased 10-fold. During period 3, which lasted as long as period 1, both groups were reinoculated with E. coli O157:H7. The numbers of E. coli O157:H7 were consistently greater in the control groups during the three periods, but comparisons within each time period determined a statistically significant (P < 0.05) difference only at day 21 of period 1. However, when the daily average counts were compared between the period 1 control group and the period 3 treatment group that included the same six animals, an overall reduction of 1.1 log(10) CFU/g was observed, with a maximum decrease of 1.8 log(10) CFU/g at day 21 (overall statistical significance, P = 0.001). Serotype O157:H7 was detected in 44% of the treatment group's intestinal tissue samples and in 64% of those from the control group (P < 0.04). These results indicated that the daily addition of 10(8) CFU of colicin E7-producing E. coli per gram of feed could reduce the fecal shedding of serotype O157:H7.  相似文献   

2.
Enterohemorrhagic Escherichia coli O157:H7, an emerging food-borne pathogen, has been implicated in several outbreaks in the US. Ruminants, including cattle, sheep and deer are reservoirs of E. coli O157:H7 and fecal shedding of the pathogen forms the vehicle of entry into the human food chain. We studied the efficacy of Lactobacillus acidophilus, Streptococcus faecium, a mixture of L. acidophilus and S. faecium and a mixture of L. acidophilus, S. faecium, Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum in reducing fecal shedding of E. coli O157:H7 by sheep experimentally infected with the pathogen prior to administration with the microbials. Following oral inoculation with 1010 CFU of E. coli O157:H7, 30 Suffolk ram lambs were blocked by body weight (six blocks of five lambs each) and lambs within the block randomly assigned to five groups. The lamb groups were fed daily for 7 weeks a basal diet without microbial supplement (control) or the basal diet with L. acidophilus or with S. faecium or with a mixture of L. acidophilus and S. faecium or with a mixture of L. acidophilus, S. faecium, L. casei, L. fermentum and L. plantarum. The microbial supplements contained stabilized live naturally occurring bacteria and were mixed with the diet at the rate of 6.0×106 CFU per kilogram of diet. Fecal samples were collected weekly and analyzed for E. coli O157:H7 using modified tryptic soy broth with novobiocin as a pre-enrichement broth and cefixim-tellurite sorbitol MacConkey agar (CT-SMAC) as a selective media. E. coli O157:H7 was confirmed by its reaction with O157 and H7 antisera. E. coli O157:H7 was shed continuously and in varying numbers in the feces throughout the 7-week experimental period by all five groups. However, lambs administered a mixture of L. acidophilus, S. faecium, L. casei, L. fermentum and L. plantarum shed significantly lower (P=0.0211) average number of E. coli O157:H7 (2.3 log10 CFU per gram of feces per week) than the other lamb groups over the entire experimental period. S. faecium supplemented lambs were comparable (P=0.0884) to lambs fed a mixture of L. acidophulus and S. faecium in fecal shedding of the pathogen (3.5 versus 4.4 log10 CFU per gram of feces) but significantly lower (P=0.0001) than the control lambs (5.6 log10 CFU per gram of feces) and those supplemented with L. acidophilus (5.5 log10 CFU per gram of feces). Average daily gain (ADG) and gain to feed ratio (G:F) were significantly improved (P=0.0145) by the mixed culture microbials (163.0 g and 0.33 for the control, 186.4 g and 0.37 for L. acidophulus, 168.2 g and 0.36 for S. faecium, 213.6 g and 0.46 for L. acidophulus and S. faecium, and 219.1 g and 0.44, respectively for L. acidophilus, S. faecium, L. casei, L. fermentum and L. plantarum supplemented lambs. The study indicates that supplementing lambs infected with E. coli O157:H7 with S. faecium or a mixture of S. faecium, L. acidophilus, L. casei, L. fermentum and L. plantarum in the diet can reduce total number of E. coli O157:H7 shed in the feces and improve animal meat production performance as well.  相似文献   

3.
This study reports analysis of faecal shedding dynamics in cattle for three Escherichia coli O157:H7 (ECO157) strains (S1, S2 and S3) of different genotype and ecological history, using experimental inoculation data. The three strains were compared for their shedding frequency and level of ECO157 in faeces. A multistate Markov chain model was used to compare shedding patterns of S1 and S2. Strains S1 and S2 were detected seven to eight times more often and at 104 larger levels than strain S3. Strains S1 and S2 had similar frequencies and levels of shedding. However, the total time spent in the shedding state during colonization was on average four times longer for S1 (15 days) compared to S2 (4 days). These results indicate that an ECO157 strain effect on the frequency, level, pattern and the duration of faecal shedding may need to be considered in control of ECO157 in the cattle reservoir.  相似文献   

4.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

5.
This study was conducted to determine if stimulating the growth of meat starter culture (Pediococcus acidilactici) in a laboratory medium (Brain Heart Infusion broth +2.3% NaCl + 1.5% sucrose; LBHI) and during meat fermentation would control Escherichia coli O157:H7. In LBHI medium without P. acidilactici, the numbers of E. coli O157:H7 increased from 4.00 to 8.34 log10 cfu ml-1, whereas in the presence of P. acidilactici (approximately 6.0 log10 cfu ml-1) in LBHI, LBHIM (LBHI + 0.005% MnSO4), LBHIO (LBHI + 0.3 unit ml-1 Oxyrase), and LBHIMO (LBHI + M + O), the numbers of E. coli O157:H7 increased from 4.00 to 8.05, 7.50, 7.99, and 6.50 log10 cfu ml-1, respectively, after incubation at 40 degrees C for 15 h. During salami fermentation, the numbers of E. coli O157:H7 changed from 7.00 to 6.40 and 5.10 log10 cfu g-1 without and with P. acidilactici (approximately 7.0 log10 cfu g-1), respectively. Stimulated P. acidilactici by M, O, and MO further reduced the number of E. coli O157:H7 from 7.00 to 4.00, 4.80, and 3.65 log10 cfu g-1, respectively. The combination of MO was a better growth stimulator for P. acidilactici, which controlled E. coli O157:H7 in both systems (P < 0.05).  相似文献   

6.
The objective of this study was to determine the time period that Escherichia coli O157:H7 survives on the hides of cattle. Extensive research has been conducted and is ongoing to identify and develop novel preharvest intervention strategies to reduce the presence of E. coli O157:H7 on live cattle and subsequent transfer to processed carcasses. If a reduction of E. coli O157:H7 levels in feces can be achieved through preharvest intervention, it is not known how long it would take for such reductions to be seen on the hide. In the study presented herein, three trials were conducted to follow E. coli O157:H7 hide prevalence over time. For each trial, 36 animals were housed in individual stanchions to minimize or prevent hide contamination events. Through prevalence determination and isolate genotyping with pulsed-field gel electrophoresis, survival of E. coli O157:H7 on the hides of live cattle was determined to be short lived, with an approximate duration of 9 days or less. The results of this study suggest that any preharvest interventions that are to be administered at the end of the finishing period will achieve maximum effect in reducing E. coli O157:H7 levels on cattle hides if given 9 days before the cattle are presented for processing. However, it should be noted that interventions reducing pathogen shedding would also contribute to decreasing hide contamination through lowering the contamination load of the processing plant lairage environment, regardless of the time of application.  相似文献   

7.
AIMS: To determine if the temperatures used in feed manufacture are likely to destroy Escherichia coli O157. METHODS AND RESULTS: Two commercial feeds were ground and inoculated with E. coli O157 cells. The feeds were heated to 50, 55, 60, 65 or 70 degrees C. Heating produced quadratic survivor curves, with rapid initial decreases. The survival characteristics of E. coli O157 differed in the two feeds. The reductions observed in one feed may not have been due to heat alone. There was evidence that indigenous anti-E. coli O157 factor(s) in one feed acted with the heat and contributed to the observed rates of bacterial death. Heating at 70 degrees C for 20 or 120 s resulted in approx. 1.3 and 2.2 log reductions in E. coli O157 numbers respectively. Lesser reductions were observed at lower temperatures. CONCLUSIONS: The time/temperature combinations used in commercial pelleting processes would not effectively kill high numbers of E. coli O157. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to look at the survival of E. coli O157 strains after heat treatment within concentrated animal feed. The study provides information on the likely risk of E. coli O157 surviving the animal feed manufacturing process.  相似文献   

8.
The effect of diet, an abrupt diet change, and fasting on the shedding of Escherichia coli O157:H7 was investigated with experimentally inoculated sheep as a ruminant model. Sheep were fed a grass hay diet (G), which was low in protein and digestible energy and high in fiber, or a mixture of corn and pelleted alfalfa (C), which was high in protein and digestible energy and low in fiber. After a single oral inoculation of E. coli O157:H7, all the animals shed fecal E. coli O157:H7. However, sheep that were fed G shed the bacterium almost twice as long as, and in larger numbers than, did sheep that were fed C. The number of culture-positive animals increased after the diet was abruptly changed from C to G and decreased with the opposite change (G to C). A 24-h fast did not influence E. coli O157:H7 shedding. Horizontal transmission of infection between animals occurred. Recent shedding of E. coli O157:H7 did not affect recolonization with E. coli O157:H7. The findings presented in this study indicate that preharvest control of diet may reduce the risk of E. coli O157:H7-positive animals entering the food chain.  相似文献   

9.
AIM: To estimate the distribution and prevalence of both Escherichia coli O157 and O157:H7-infecting bacteriophages within a 50,000 head commercial beef feedlot. METHODS AND RESULTS: Escherichia coli O157 was detected in approximately 27% of the individual samples, distributed across seven of the 10 pens screened. In a simple initial screen to detect O157:H7-infecting phages, none were detected in any pen or individual sample. In contrast, after a series of enrichment procedures O157:H7-infecting phages were detected in every pen and in the majority of the samples from most pens; virulent bacteriophages active against E. coli O157:H7 were detected post-enrichment from 39/60 (65%) of the feedlot samples, and 58/60 (approximately 97%) contained phage that infected E. coli B or O157:H7. CONCLUSIONS: The data we present here indicates that we may be grossly underestimating the prevalence of O157:H7-infecting phages in livestock if we simply screen samples and that enrichment screening is required to truly determine the presence of phages in these ecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data suggest that O157:H7-infecting phages may play a role in the ecology and transient colonization of cattle by E. coli O157:H7. Further, this and previous data suggest that before starting in vivo pathogen eradication studies using phage or any other regime, test animals should be enrichment screened for phage to avoid erroneous results.  相似文献   

10.
Gallbladders and rectal contents were collected from cattle (n=933) at slaughter to determine whether the gallbladder harbors Escherichia coli O157:H7. Both gallbladder mucosal swabs and homogenized mucosal tissues were used for isolation. Only five gallbladders (0.54%) were positive for E. coli O157:H7. Fecal prevalence averaged 7.1%; however, none of the cattle that had E. coli O157:H7 in the gallbladder was positive for E. coli O157:H7 in feces. Therefore, the gallbladder does not appear to be a common site of colonization for E. coli O157:H7 in beef cattle.  相似文献   

11.
A total of 401 enterohemorrhagic Escherichia coli (EHEC) O157:H7 isolates from two experimentally infected calves were analyzed using molecular biological methods. Genetic differences detected by pulsed-field gel electrophoresis were observed between the inoculated and recovered strains as early as 1 day post inoculation. The loss of the inoculated clone was observed in one calf. Replication and dissemination of the EHEC O157:H7 strains that mutated in cattle may result in the diversification of this organism among cattle populations.  相似文献   

12.
Acid resistance (AR) is important to survival of Escherichia coli O157:H7 in acidic foods and may play a role during passage through the bovine host. In this study, we examined the role in AR of the rpoS-encoded global stress response regulator sigma(S) and its effect on shedding of E. coli O157:H7 in mice and calves. When assayed for each of the three AR systems identified in E. coli, an rpoS mutant (rpoS::pRR10) of E. coli O157:H7 lacked the glucose-repressed system and possessed reduced levels of both the arginine- and glutamate-dependent AR systems. After administration of the rpoS mutant and the wild-type strain (ATCC 43895) to ICR mice at doses ranging from 10(1) to 10(4) CFU, we found the wild-type strain in feces of mice given lower doses (10(2) versus 10(3) CFU) and at a greater frequency (80% versus 13%) than the mutant strain. The reduction in passage of the rpoS mutant was due to decreased AR, as administration of the mutant in 0.05 M phosphate buffer facilitated passage and increased the frequency of recovery in feces from 27 to 67% at a dose of 10(4) CFU. Enumeration of E. coli O157:H7 in feces from calves inoculated with an equal mixture of the wild-type strain and the rpoS mutant demonstrated shedding of the mutant to be 10- to 100-fold lower than wild-type numbers. This difference in shedding between the wild-type strain and the rpoS mutant was statistically significant (P 相似文献   

13.
The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 x 10(1) to 1.5 x 10(5) CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment.  相似文献   

14.
Effect of cattle diet on Escherichia coli O157:H7 acid resistance.   总被引:1,自引:0,他引:1  
The duration of shedding of Escherichia coli O157 isolates by hay-fed and grain-fed steers experimentally inoculated with E. coli O157:H7 was compared, as well as the acid resistance of the bacteria. The hay-fed animals shed E. coli O157 longer than the grain-fed animals, and irrespective of diet, these bacteria were equally acid resistant. Feeding cattle hay may increase human infections with E. coli O157:H7.  相似文献   

15.
16.
AIMS: To determine if thyroid function affects faecal shedding of Escherichia coli O157:H7. METHODS AND RESULTS: Eight yearling cattle (n = 4 per treatment group), previously identified as shedding E. coli O157:H7, received either 0 or 10 mg 6-N-propyl-2-thiouracil (PTU) kg(-1) BW day(-1) for 14 days to reduce serum concentrations of the thyroid hormones, T(3) and T(4). Animals were monitored daily for changes in faecal shedding of E. coli O157:H7 and E. coli (EC) for the 14-day treatment period and an additional 7 days post-treatment. Body weight was measured weekly and serum concentrations of T(3) and T(4) were determined every 3 days. No differences in faecal shedding of E. coli O157:H7 were observed during the 14-day treatment period. However, compared with control animals, a greater percentage of PTU-treated cattle ejected E. coli O157:H7 on day 16 (100 vs 25%) and 18 (75 vs 0%) of the post-treatment period. Serum T(3) was lower in PTU-treated cattle during the 14-day treatment period and greater on day 18 of the post-treatment period. CONCLUSION: Cattle with chemically altered thyroid hormones had similar shedding patterns of faecal E. coli O157:H7 and EC during the 14-day treatment period. However, faecal shedding of E. coli O157:H7 tended to be greater, and serum concentrations of T(3), were greater for PTU-treated cattle immediately following the termination of PTU treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Short-term chemical inhibition of thyroid hormones had minimal effects on faecal shedding of E. coli O157:H7 in naturally infected cattle. However, a hyperthyroid state as observed postdosing might play a role in the seasonal shedding of E. coli O157:H7 in cattle.  相似文献   

17.
18.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

19.
A cattle trial using artificially inoculated calves was conducted to determine the effect of the addition of colicinogenic Escherichia coli strains capable of producing colicin E7 (a 61-kDa DNase) to feed on the fecal shedding of serotype O157:H7. The experiment was divided into three periods. In period 1, which lasted 24 days, six calves were used as controls, and eight calves received 107 CFU of E. coli (a mixture of eight colicinogenic E. coli strains) per g of feed. Both groups were orally inoculated with nalidixic acid-resistant E. coli O157:H7 strains 7 days after the treatment started. In periods 2 and 3, the treatment and control groups were switched, and the colicinogenic E. coli dose was increased 10-fold. During period 3, which lasted as long as period 1, both groups were reinoculated with E. coli O157:H7. The numbers of E. coli O157:H7 were consistently greater in the control groups during the three periods, but comparisons within each time period determined a statistically significant (P < 0.05) difference only at day 21 of period 1. However, when the daily average counts were compared between the period 1 control group and the period 3 treatment group that included the same six animals, an overall reduction of 1.1 log10 CFU/g was observed, with a maximum decrease of 1.8 log10 CFU/g at day 21 (overall statistical significance, P = 0.001). Serotype O157:H7 was detected in 44% of the treatment group's intestinal tissue samples and in 64% of those from the control group (P < 0.04). These results indicated that the daily addition of 108 CFU of colicin E7-producing E. coli per gram of feed could reduce the fecal shedding of serotype O157:H7.  相似文献   

20.
Long-duration consistently Escherichia coli O157:H7 culture-positive cattle were euthanized and necropsied. Tissue and digesta from along the gastrointestinal tract (GIT) were cultured for the bacteria and examined histologically for lymphoid character. E. coli O157:H7 was detected only at the rectoanal junction mucosa and not at any other GIT location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号