首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker''s yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt).  相似文献   

2.
The antifungal activity of proteinaceous compounds from different food matrices was investigated. In initial experiments, water-soluble extracts of wheat sourdoughs, cheeses, and vegetables were screened by agar diffusion assays with Penicillium roqueforti DPPMAF1 as the indicator fungus. Water-soluble extracts of sourdough fermented with Lactobacillus brevis AM7 and Phaseolus vulgaris cv. Pinto were selected for further study. The crude water-soluble extracts of L. brevis AM7 sourdough and P. vulgaris cv. Pinto had a MIC of 40 mg of peptide/ml and 30.9 mg of protein/ml, respectively. MICs were markedly lower when chemically synthesized peptides or partially purified protein fractions were used. The water-soluble extract of P. vulgaris cv. Pinto showed inhibition toward a large number of fungal species isolated from bakeries. Phaseolin alpha-type precursor, phaseolin, and erythroagglutinating phytohemagglutinin precursor were identified in the water-soluble extract of P. vulgaris cv. Pinto by nano liquid chromatography-electrospray ionization-tandem mass spectrometry. When the antifungal activity was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all three proteins were inhibitory. A mixture of eight peptides was identified from the water-soluble extract of sourdough L. brevis AM7, and five of these exhibited inhibitory activity. Bread was made at the pilot plant scale by sourdough fermentation with L. brevis AM7 and addition of the water-soluble extract (27%, vol/wt; 5 mg of protein/ml) of P. vulgaris cv. Pinto. Slices of bread packed in polyethylene bags did not show contamination by fungi until at least 21 days of storage at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate.  相似文献   

3.
The consumption of low-salt bread represents an efficient way to improve public health by decreasing cardiovascular health issues related to increased intakes of sodium chloride (NaCl). The reduction of NaCl influences the bread quality characteristics, in particular the shelf-life. Calcium propionate (CP) is commonly used in bread as an antifungal agent. Alternatively, sourdough can be used as a natural preservative. This work addresses the feasibility of NaCl reduction in wheat bread focussing on shelf-life and the compensation using sourdough as well as chemical preservatives. The impact of NaCl reduction and the addition of preservative agents in conjunction with different NaCl concentrations on the shelf-life of bread were tested under 'environmental' conditions in a bakery as well as using challenge tests against selected fungi. The challenge tests were performed using fungi commonly found in the bakery environment such as Penicillium expansum, Fusarium culmorum and Aspergillus niger. NaCl reduction decreased the shelf-life by 1-2?days. The addition of sourdough with antifungal activity prolonged the shelf-life to 12-14?days whereas the addition of 0.3?% calcium propionate prolonged the shelf-life to 10-12?days only. The fungal challenge tests revealed differences in the determined shelf-life between the different fungi based on their resistance. Similar antifungal performance was observed in sourdough breads and calcium propionate breads when tested against the different indicator moulds. The findings of this study indicate that addition of sourdough fermented using a specifically selected antifungal Lactobacillus amylovorus DSM 19280 can replace the chemical preservative calcium propionate addition and compensate for the reduced level and, therefore, guarantee the product safety of low-salt bread.  相似文献   

4.
Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C18:1 fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter−1. Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter−1. L. hammesii accumulated the monohydroxy C18:1 fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter−1 (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.  相似文献   

5.
An efficient β-glucosidase (βG)-producing strain, Wickerhamomyces anomalus BS81, was isolated from naturally fermented olive brine and identified based on PCR/restriction fragment length polymorphism of the rDNA internal transcribed spacer and sequence analysis of the D1/D2 region of the 26S rRNA gene. The hydrolytic activity of the βG had an optimum pH of 8.5 and an optimum temperature of 35 °C. The enzyme had high substrate specificity and high catalytic efficiency (K(m) 0.99 mM, V(max) 14 U g(-1) of cells) for p-nitrophenyl-β-d-glucopyranoside. The enzyme was activated by increasing concentrations of NaCl, with maximum activity at 150 g L(-1) NaCl. Although βGs have been purified and characterized from several other sources, the W. anomalusβG is unique among βGs because its relative maximum activity occurs at alkaline pH and 35 °C. Moreover, the yeast strain has esterase activity that acts synergistically with βG to degrade oleuropein to debitter table olives and olive oil.  相似文献   

6.
We previously found that Wickerhamomyces anomalus (formerly Hansenula anomala, Pichia anomala) was the second most frequently isolated yeast in Belgian artisan bakery sourdoughs and that the yeast dominated laboratory sourdough fermentations. Such findings are of interest in terms of the advantage of W. anomalus over other commonly encountered sourdough yeasts and its potential introduction into the sourdough ecosystem. Here, we provide a brief overview of current knowledge on yeast ecology and diversity in sourdough in the context of the potential natural habitat of W. anomalus. Insight into the population structure of W. anomalus was obtained by comparing internal transcribed spacer rDNA sequences of selected sourdough isolates with publicly available database sequences.  相似文献   

7.
Sourdough lactic acid bacteria were selected for antifungal activity by a conidial germination assay. The 10-fold-concentrated culture filtrate of Lactobacillus plantarum 21B grown in wheat flour hydrolysate almost completely inhibited Eurotium repens IBT18000, Eurotium rubrum FTDC3228, Penicillium corylophilum IBT6978, Penicillium roqueforti IBT18687, Penicillium expansum IDM/FS2, Endomyces fibuliger IBT605 and IDM3812, Aspergillus niger FTDC3227 and IDM1, Aspergillus flavus FTDC3226, Monilia sitophila IDM/FS5, and Fusarium graminearum IDM623. The nonconcentrated culture filtrate of L. plantarum 21B grown in whole wheat flour hydrolysate had similar inhibitory activity. The activity was fungicidal. Calcium propionate at 3 mg ml(-1) was not effective under the same assay conditions, while sodium benzoate caused inhibition similar to L. plantarum 21B. After extraction with ethyl acetate, preparative silica gel thin-layer chromatography, and chromatographic and spectroscopic analyses, novel antifungal compounds such as phenyllactic and 4-hydroxy-phenyllactic acids were identified in the culture filtrate of L. plantarum 21B. Phenyllactic acid was contained at the highest concentration in the bacterial culture filtrate and had the highest activity. It inhibited all the fungi tested at a concentration of 50 mg ml(-1) except for P. roqueforti IBT18687 and P. corylophilum IBT6978 (inhibitory concentration, 166 mg ml(-1)). L. plantarum 20B, which showed high antimold activity, was also selected. Preliminary studies showed that phenyllactic and 4-hydroxy-phenyllactic acids were also contained in the bacterial culture filtrate of strain 20B. Growth of A. niger FTDC3227 occurred after 2 days in breads started with Saccharomyces cerevisiae 141 alone or with S. cerevisiae and Lactobacillus brevis 1D, an unselected but acidifying lactic acid bacterium, while the onset of fungal growth was delayed for 7 days in bread started with S. cerevisiae and selected L. plantarum 21B.  相似文献   

8.
Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40 degrees C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C.  相似文献   

9.
Aims: This study aimed at characterizing the lactic acid bacteria microbiota and selecting mixed endogenous starters to be used for sourdough fermentation of spelt or emmer flours. Methods and Results: Identification of lactic acid bacteria was carried out by partial sequencing of the 16S rRNA, recA, 16S/23S rRNA spacer region and pheS genes. Spelt flour showed the largest biodiversity, while Lactobacillus plantarum dominated in emmer flour. Isolates were subjected to RAPD‐PCR analysis and screened based on the kinetics of growth and acidification, quotient of fermentation and liberation of free amino acids (FAA) during sourdough fermentation. After selection, mixed starters were used according to a two‐step fermentation process. Wheat flour was fermented by the same starters. Spelt and emmer sourdoughs had slightly higher pH than wheat sourdoughs but titratable acidity, concentration of FAA and phytase activity were higher. Specific volume and crumb grain of emmer and, especially, spelt breads approached those of wheat breads. Sensory analysis confirmed the suitability of spelt and emmer for bread making. Conclusions: The sourdough biotechnology was indispensable to completely exploit the potential of spelt and emmer flours. Significance and Impact of the Study: Results filled up the lack of knowledge on the lactic acid bacteria microbiota and technological performances of spelt and emmer flours.  相似文献   

10.
11.
A pool of selected lactic acid bacteria was used for the sourdough fermentation of various cereal flours with the aim of synthesizing antioxidant peptides. The radical-scavenging activity of water/salt-soluble extracts (WSE) from sourdoughs was significantly (P < 0.05) higher than that of chemically acidified doughs. The highest activity was found for whole wheat, spelt, rye, and kamut sourdoughs. Almost the same results were found for the inhibition of linoleic acid autoxidation. WSE were subjected to reverse-phase fast protein liquid chromatography. Thirty-seven fractions were collected and assayed in vitro. The most active fractions were resistant to further hydrolysis by digestive enzymes. Twenty-five peptides of 8 to 57 amino acid residues were identified by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry. Almost all of the sequences shared compositional features which are typical of antioxidant peptides. All of the purified fractions showed ex vivo antioxidant activity on mouse fibroblasts artificially subjected to oxidative stress. This study demonstrates the capacity of sourdough lactic acid bacteria to release peptides with antioxidant activity through the proteolysis of native cereal proteins.  相似文献   

12.
This work was aimed at producing a sourdough bread that is tolerated by celiac sprue (CS) patients. Selected sourdough lactobacilli had specialized peptidases capable of hydrolyzing Pro-rich peptides, including the 33-mer peptide, the most potent inducer of gut-derived human T-cell lines in CS patients. This epitope, the most important in CS, was hydrolyzed completely after treatment with cells and their cytoplasmic extracts (CE). A sourdough made from a mixture of wheat (30%) and nontoxic oat, millet, and buckwheat flours was started with lactobacilli. After 24 h of fermentation, wheat gliadins and low-molecular-mass, alcohol-soluble polypeptides were hydrolyzed almost totally. Proteins were extracted from sourdough and used to produce a peptic-tryptic digest for in vitro agglutination tests on K 562(S) subclone cells of human origin. The minimal agglutinating activity was ca. 250 times higher than that of doughs chemically acidified or started with baker's yeast. Two types of bread, containing ca. 2 g of gluten, were produced with baker's yeast or lactobacilli and CE and used for an in vivo double-blind acute challenge of CS patients. Thirteen of the 17 patients showed a marked alteration of intestinal permeability after ingestion of baker's yeast bread. When fed the sourdough bread, the same 13 patients had values for excreted rhamnose and lactulose that did not differ significantly from the baseline values. The other 4 of the 17 CS patients did not respond to gluten after ingesting the baker's yeast or sourdough bread. These results showed that a bread biotechnology that uses selected lactobacilli, nontoxic flours, and a long fermentation time is a novel tool for decreasing the level of gluten intolerance in humans.  相似文献   

13.
This work was aimed at producing a sourdough bread that is tolerated by celiac sprue (CS) patients. Selected sourdough lactobacilli had specialized peptidases capable of hydrolyzing Pro-rich peptides, including the 33-mer peptide, the most potent inducer of gut-derived human T-cell lines in CS patients. This epitope, the most important in CS, was hydrolyzed completely after treatment with cells and their cytoplasmic extracts (CE). A sourdough made from a mixture of wheat (30%) and nontoxic oat, millet, and buckwheat flours was started with lactobacilli. After 24 h of fermentation, wheat gliadins and low-molecular-mass, alcohol-soluble polypeptides were hydrolyzed almost totally. Proteins were extracted from sourdough and used to produce a peptic-tryptic digest for in vitro agglutination tests on K 562(S) subclone cells of human origin. The minimal agglutinating activity was ca. 250 times higher than that of doughs chemically acidified or started with baker's yeast. Two types of bread, containing ca. 2 g of gluten, were produced with baker's yeast or lactobacilli and CE and used for an in vivo double-blind acute challenge of CS patients. Thirteen of the 17 patients showed a marked alteration of intestinal permeability after ingestion of baker's yeast bread. When fed the sourdough bread, the same 13 patients had values for excreted rhamnose and lactulose that did not differ significantly from the baseline values. The other 4 of the 17 CS patients did not respond to gluten after ingesting the baker's yeast or sourdough bread. These results showed that a bread biotechnology that uses selected lactobacilli, nontoxic flours, and a long fermentation time is a novel tool for decreasing the level of gluten intolerance in humans.  相似文献   

14.
Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40°C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C.  相似文献   

15.
Two types of white wheat bread (high- and low-type loaves) were investigated for rope spoilage. Thirty of the 56 breads tested developed rope spoilage within 5 days; the high-type loaves were affected by rope spoilage more than the low-type loaves. Sixty-one Bacillus strains were isolated from ropy breads and were characterized on the basis of their phenotypic and genotypic traits. All of the isolates were identified as Bacillus subtilis by biochemical tests, but molecular assays (randomly amplified polymorphic DNA PCR assay, denaturing gradient gel electrophoresis analysis, and sequencing of the V3 region of 16S ribosomal DNA) revealed greater Bacillus species variety in ropy breads. In fact, besides strains of B. subtilis, Bacillus licheniformis, Bacillus cereus, and isolates of Bacillus clausii and Bacillus firmus were also identified. All of the ropy Bacillus isolates exhibited amylase activity, whereas only 32.4% of these isolates were able to produce ropiness in bread slices after treatment at 96 degrees C for 10 min. Strains of lactic acid bacteria previously isolated from sourdough were first selected for antirope activity on bread slices and then used as starters for bread-making experiments. Prevention of growth of approximately 10(4) rope-producing B. subtilis G1 spores per cm(2) on bread slices for more than 15 days was observed when heat-treated cultures of Lactobacillus plantarum E5 and Leuconostoc mesenteroides A27 were added. Growth of B. subtilis G1 occurred after 7 days in breads started with Saccharomyces cerevisiae T22, L. plantarum E5, and L. mesenteroides A27.  相似文献   

16.
The microflora of a Sudanese sorghum flour, a spontaneously fermented sourdough and along-term sourdough produced in a Sudanese household by consecutive re-inoculations, wasstudied. The dominant contaminants of sorghum flour were Gram-negative, catalase-positive,rod-shaped bacteria with counts of about 105 cfu g−1. Thespontaneously fermented sorghum sourdough showed a bacterial succession from Gram-negative,catalase-positive contaminants to Enterococcus faecalis , Lactococcus lactis , Lactobacillus fermentum and Lact. reuteri . The total bacterial countreached about1010 cfu g−1 and the pH dropped from6·4 to 3·35 in about 42 h. In this phase, only the latter two species remaineddominant in a ratio of 1:1. From the Sudanese long-term dough, seven strains of Lactobacillus were isolated, representing the dominant flora. Sequence comparison ofpartial 16S rRNA gene sequences were used to clarify their phylogenetic positions. Five strainswere classified as Lact.vaginalis and could be regarded as heterogenous biovars of thisspecies. The other two strains could be assigned to Lact. helveticus .RAPD-PCR and sugar fermentation patterns were useful in differentiation of these strains.  相似文献   

17.
EPS formed by lactobacilli in situ during sourdough fermentation may replace hydrocolloids currently used as texturizing, antistaling, or prebiotic additives in bread production. In this study, a screening of >100 strains of cereal-associated and intestinal lactic acid bacteria was performed for the production of exopolysaccharides (EPS) from sucrose. Fifteen strains produced fructan, and four strains produced glucan. It was remarkable that formation of glucan and fructan was most frequently found in intestinal isolates and strains of the species Lactobacillus reuteri, Lactobacillus pontis, and Lactobacillus frumenti from type II sourdoughs. By the use of PCR primers derived from conserved amino acid sequences of bacterial levansucrase genes, it was shown that 6 of the 15 fructan-producing lactobacilli and none of 20 glucan producers or EPS-negative strains carried a levansucrase gene. In sourdough fermentations, it was determined whether those strains producing EPS in MRS medium modified as described by Stolz et al. (37) and containing 100 g of sucrose liter(-1) as the sole source of carbon also produce the same EPS from sucrose during sourdough fermentation in the presence of 12% sucrose. For all six EPS-producing strains evaluated in sourdough fermentations, in situ production of EPS at levels ranging from 0.5 to 2 g/kg of flour was demonstrated. Production of EPS from sucrose is a metabolic activity that is widespread among sourdough lactic acid bacteria. Thus, the use of these organisms in bread production may allow the replacement of additives.  相似文献   

18.
Sourdough application has been extensively increased in the last years due to the consumers demand for food consumption without the addition of chemical preservatives. Several starter cultures have been applied in sourdough bread making targeting the increase of bread self-life and the improvement of sensorial character. More specific, Lactobacillus acidophilus and Lactobacillus sakei as single and mixed cultures were used for sourdough bread making. Various sourdough breads were produced with the addition of sourdough perviously prepared with 10% w/w L. acidophilus, 10% w/w L. sakei and 5% w/w L. acidophilus and 5% w/w L. sakei at the same time. Various chemical parameters were determined such as lactic acid, total titratable acidity and pH. The results revealed that the produced sourdough bread made with sourdough containing the mixed culture was preserved for more days (12 days) than all the other breads produced in the frame of this study, since it contained lactic acid in higher concentrations. The respective total titratable acidity varied between 10.5 and 11 ml NaOH N/10. The same sourdough bread had a firmer texture, better aroma, flavor and overall quality compared to other sourdough breads examined in this study, as shown by sensory evaluation tests and results obtained through SPME GC–MS analysis, which revealed significant differences among the different bread types.  相似文献   

19.
Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactobacillus sanfranciscensis, Lactobacillus brevis, Lactobacillus paralimentarius, and Weissella cibaria. This consortium seems to be unique for the Greek traditional wheat sourdoughs studied. Strains of the species W. cibaria have not been isolated from sourdoughs previously. No Lactobacillus pontis or Lactobacillus panis strains were found. An L. brevis-like isolate (ACA-DC 3411 t1) could not be identified properly and might be a new sourdough LAB species. In addition, fermentation capabilities associated with the LAB detected have been studied. During laboratory fermentations, all heterofermentative sourdough LAB strains produced lactic acid, acetic acid, and ethanol. Mannitol was produced from fructose that served as an additional electron acceptor. In addition to glucose, almost all of the LAB isolates fermented maltose, while fructose as the sole carbohydrate source was fermented by all sourdough LAB tested except L. sanfranciscensis. Two of the L. paralimentarius isolates tested did not ferment maltose; all strains were homofermentative. In the presence of both maltose and fructose in the medium, induction of hexokinase activity occurred in all sourdough LAB species mentioned above, explaining why no glucose accumulation was found extracellularly. No maltose phosphorylase activity was found either. These data produced a variable fermentation coefficient and a unique sourdough metabolite composition.  相似文献   

20.
Protein hydrolysis and amino acid metabolism contribute to the beneficial effects of sourdough fermentation on bread quality. In this work, genes of Lactobacillus sanfranciscensis strain DSM 20451 involved in peptide uptake and hydrolysis were identified and their expression during growth in sourdough was determined. Screening of the L. sanfranciscensis genome with degenerate primers targeting prt and analysis of proteolytic activity in vitro provided no indication for proteolytic activity. Proteolysis in aseptic doughs and sourdoughs fermented with L. sanfranciscensis was inhibited upon the addition of an aspartic protease inhibitor. These results indicate that proteolysis was not linked to the presence of L. sanfranciscensis DSM 20451 and that this strain does not harbor a proteinase. Genes encoding the peptide transport systems Opp and DtpT and the intracellular peptidases PepT, PepR, PepC, PepN, and PepX were identified. Both peptide uptake systems and the genes pepN, pepX, pepC, and pepT were expressed by L. sanfranciscensis growing exponentially in sourdough, whereas pepX was not transcribed. The regulation of the expression of Opp, DtpT, and PepT during growth of L. sanfranciscensis in sourdough was investigated. Expression of Opp and DtpT was reduced approximately 17-fold when the peptide supply in dough was increased. The expression of PepT was dependent on the peptide supply to a lesser extent. Thus, the accumulation of amino nitrogen by L. sanfranciscensis in dough is attributable to peptide hydrolysis rather than proteolysis and amino acid metabolism by L. sanfranciscensis during growth in sourdough is limited by the peptide availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号