首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Hepatitis C virus (HCV) induces inflammatory signals, leading to hepatitis, hepatocellular carcinomas, and lymphomas. The mechanism of HCV involvement in the host's innate immune responses has not been well characterized. In this study, we analyzed expression and regulation of the entire panel of toll-like receptors (TLRs) in human B cells following HCV infection in vitro. Among all of the TLRs (TLRs 1 to 10) examined, only TLR4 showed an altered expression (a three- to sevenfold up-regulation) after HCV infection. Peripheral blood mononuclear cells from HCV-infected individuals also showed a higher expression level of TLR4 compared with those of healthy individuals. HCV infection significantly increased beta interferon (IFN-beta) and interleukin-6 (IL-6) secretion from B cells, particularly after lipopolysaccharide stimulation. The increased IFN-beta and IL-6 production was mediated by TLR4 induction, since the introduction of the small interfering RNA against TLR4 specifically inhibited the HCV-induced cytokine production. Among all of the viral proteins, only NS5A caused TLR4 induction in hepatocytes and B cells. NS5A specifically activated the promoter of the TLR4 gene in both hepatocytes and B cells. In conclusion, HCV infection directly induces TLR4 expression and thereby activates B cells, which may contribute to the host's innate immune responses.  相似文献   

4.
Chronic hepatitis C virus (HCV) infection is a major global public health problem. HCV infection is supported by viral strategies to evade the innate antiviral response wherein the viral NS3.4A protease complex targets and cleaves the interferon promoter stimulator-1 (IPS-1) adaptor protein to ablate signaling of interferon alpha/beta immune defenses. Here we examined the structural requirements of NS3.4A and the therapeutic potential of NS3.4A inhibitors to control the innate immune response against virus infection. The structural composition of NS3 includes an amino-terminal serine protease domain and a carboxyl-terminal RNA helicase domain. NS3 mutants lacking the helicase domain retained the ability to control virus signaling initiated by retinoic acid-inducible gene-I (RIG-I) or melanoma differentiation antigen 5 and suppressed the downstream activation of interferon regulatory factor-3 (IRF-3) and nuclear factor kappaB (NF-kappaB) through the targeted proteolysis of IPS-1. This regulation was abrogated by truncation of the NS3 protease domain or by point mutations that ablated protease activity. NS3.4A protease control of antiviral immune signaling was due to targeted proteolysis of IPS-1 by the NS3 protease domain and minimal NS4A cofactor. Treatment of HCV-infected cells with an NS3 protease inhibitor prevented IPS-1 proteolysis by the HCV protease and restored RIG-I immune defense signaling during infection. Thus, the NS3.4A protease domain can target IPS-1 for cleavage and is essential for blocking RIG-I signaling to IRF-3 and NF-kappaB, whereas the helicase domain is dispensable for this action. Our results indicate that NS3.4A protease inhibitors have immunomodulatory potential to restore innate immune defenses to HCV infection.  相似文献   

5.
6.
The nucleoside analogue Ribavirin significantly increases patient response to IFN-α treatment of HCV, by directly inhibiting viral replication. Recent studies indicate that Ribavirin also regulates immunity and we propose that Ribavirin enhances specific interferon sensitive gene (ISG) expression by amplifying the IFN-α-JAK/STAT pathway. We found that IFN-α-induced STAT1 and STAT3 phosphorylation was increased in hepatocytes co-treated with Ribavirin and IFN-α, compared to IFN-α alone. Ribavirin specifically enhanced IFN-α induced mRNA and protein of the anti-viral mediator MxA, which co-localised with HCV core protein. These novel findings indicate for the first time that Ribavirin, in addition to its viral incorporation, also enhances IFN-α-JAK/STAT signalling, leading to a novel MxA-mediated immuno-modulatory mechanism that may enhance IFN-α anti-viral activity against HCV.  相似文献   

7.
8.
Understanding the mechanisms of hepatitis C virus (HCV) pathogenesis and persistence has been hampered by the lack of small, convenient animal models. GB virus B (GBV-B) is phylogenetically the closest related virus to HCV. It causes generally acute and occasionally chronic hepatitis in small primates and is used as a surrogate model for HCV. It is not known, however, whether GBV-B has evolved strategies to circumvent host innate defenses similar to those of HCV, a property that may contribute to HCV persistence in vivo. We show here in cultured tamarin hepatocytes that GBV-B NS3/4A protease, but not a related catalytically inactive mutant, effectively blocks innate intracellular antiviral responses signaled through the RNA helicase, retinoic acid-inducible gene I (RIG-I), an essential sensor molecule that initiates host defenses against many RNA viruses, including HCV. GBV-B NS3/4A protease specifically cleaves mitochondrial antiviral signaling protein (MAVS; also known as IPS-1/Cardif/VISA) and dislodges it from mitochondria, thereby disrupting its function as a RIG-I adaptor and blocking downstream activation of both interferon regulatory factor 3 and nuclear factor kappa B. MAVS cleavage and abrogation of virus-induced interferon responses were also observed in Huh7 cells supporting autonomous replication of subgenomic GBV-B RNAs. Our data indicate that, as in the case of HCV, GBV-B has evolved to utilize its major protease to disrupt RIG-I signaling and impede innate antiviral defenses. These data provide further support for the use of GBV-B infection in small primates as an accurate surrogate model for deciphering virus-host interactions in hepacivirus pathogenesis.  相似文献   

9.
Hepatitis C virus (HCV) infection induces a wide range of chronic liver injuries; however, the mechanism through which HCV evades the immune surveillance system remains obscure. Blood dendritic cells (DCs) play a pivotal role in the recognition of viral infection and the induction of innate and adaptive immune responses. Several reports suggest that HCV infection induces the dysfunction of DCs in patients with chronic hepatitis C. Toll-like receptor (TLR) has been shown to play various roles in many viral infections; however, the involvement of HCV proteins in the TLR signaling pathway has not yet been precisely elucidated. In this study, we established mouse macrophage cell lines stably expressing HCV proteins and determined the effect of HCV proteins on the TLR signaling pathways. Immune cells expressing NS3, NS3/4A, NS4B, or NS5A were found to inhibit the activation of the TLR2, TLR4, TLR7, and TLR9 signaling pathways. Various genotypes of NS5A bound to MyD88, a major adaptor molecule in TLR, inhibited the recruitment of interleukin-1 receptor-associated kinase 1 to MyD88, and impaired cytokine production in response to TLR ligands. Amino acid residues 240 to 280, previously identified as the interferon sensitivity-determining region (ISDR) in NS5A, interacted with the death domain of MyD88, and the expression of a mutant NS5A lacking the ISDR partially restored cytokine production. These results suggest that the expression of HCV proteins modulates the TLR signaling pathway in immune cells.  相似文献   

10.
Kohara M  Inoue K 《Uirusu》2004,54(2):197-204
One of the prominent features of hepatitis C virus (HCV) is persistent infection, which is assumed to be a crucial event as a result of evading host defense system. Type I interferon beta (IFN- beta) system is induced rapidly after viral infection and plays a central role in innate immunity. Upon immediate induction of type I IFN as host first defense line, interferon regulatory factor-3 (IRF-3) is phosphorylated, formed of homodimer and translocates to nucleus. IFN-beta induction due to new castle disease virus (NDV) was significantly decreasd after the expression of full HCV genome (HCR6-Rz). Similar modification was observed in cell line expressing core to the NS2 protein region (HCR6-Fse). However, this decreasing was not observed in cell line expressing NS2 to the NS5B region (HCR6-Age). IRF-3 dimer formation induced by NDV infection was also suppressed after the expression of HCR6-Rz and HCR6-Fse, but not HCR6-Age. We further analyzed using transiently expressed HCV core, E1 or E2 in HepG2 cells. The suppression of IRF-3 dimer formation was caused by HCV core protein alone. These results indicated that a new crucial biological function of HCV core protein that may be related to persistence and pathogenesis of HCV.  相似文献   

11.
Yang D  Liu N  Zuo C  Lei S  Wu X  Zhou F  Liu C  Zhu H 《PloS one》2011,6(11):e27552

Background and Aim

The interaction between hepatitis C virus (HCV) and innate antiviral defense systems in primary human hepatocytes is not well understood. The objective of this study is to examine how primary human hepatocytes response to HCV infection.

Methods

An infectious HCV isolate JFH1 was used to infect isolated primary human hepatocytes. HCV RNA or NS5A protein in the cells was detected by real-time PCR or immunofluorescence staining respectively. Apoptosis was examined with flow cytometry. Mechanisms of HCV-induced IFN-β expression and apoptosis were determined.

Results

Primary human hepatocytes were susceptible to JFH1 virus and released infectious virus. IFN-α inhibited viral RNA replication in the cells. IFN-β and interferon-stimulated genes were induced in the cells during acute infection. HCV infection induced apoptosis of primary human hepatocytes through the TRAIL-mediated pathway. Silencing RIG-I expression in primary human hepatocytes inhibited IFN-β and TRAIL expression and blocked apoptosis of the cells, which facilitated viral RNA replication in the cells. Moreover, HCV NS34A protein inhibited viral induced IFN-β expression in primary human hepatocytes.

Conclusion

Innate host response is intact in HCV-infected primary human hepatocytes. RIG-I plays a key role in the induction of IFN and TRAIL by viruses and apoptosis of primary human hepatocytes via activation of the TRAIL-mediated pathway. HCV NS34A protein appears to be capable of disrupting the innate antiviral host responses in primary human hepatocytes. Our study provides a novel mechanism by which primary human hepatocytes respond to natural HCV infection.  相似文献   

12.
已知丙型肝炎病毒(hepatitis C virus,HCV)可通过其蛋白酶NS3/4A切割线粒体抗病毒信号蛋白(mitochondrial antiviral signaling protein,MAVS)来逃逸天然免疫识别,但尚不清楚其切割动力学及切割在抑制干扰素中的作用。本研究旨在细胞模型中探讨HCV感染过程中病毒复制建立及病毒NS3/4A切割MAVS的动态过程,探究NS3/4A切割MAVS对病毒逃逸宿主天然免疫建立感染的贡献。首先构建基于绿色荧光蛋白(green fluorescent protein,GFP)的MAVS切割报告系统(GFP-NLS-MAVS-TM462),用 HCV Jc1-Gluc 感染Huh7.5/GFP-NLS-MAVS-TM462细胞。结果显示,病毒复制早期MAVS切割效率较低;NS3/4A高效切割MAVS发生于HCV复制晚期,且其切割效率与NS3蛋白水平相关。利用带有GFP ypet的HCV报告病毒Jc1-378-1感染Huh7.5/RFP-NLS-MAVS-TM462细胞,在单细胞水平观察HCV感染阳性细胞中MAVS被切割情况,发现HCV复制细胞中仅部分细胞MAVS被切割。进一步研究发现,不同基因型NS3/4A切割MAVS的效率仅与NS3表达水平相关。以上结果提示,HCV蛋白酶NS3/4A切割MAVS依赖NS3/4A蛋白在病毒复制过程中的累积,对在病毒复制早期逃逸宿主天然免疫建立感染可能无显著贡献。  相似文献   

13.
14.
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host innate and adaptive antiviral immunity against hepatitis B virus (HBV) infection in vivo. In an effort to elucidate the antiviral mechanism of these cytokines, 37 IFN-stimulated genes (ISGs), which are highly inducible in hepatocytes, were tested for their ability to inhibit HBV replication upon overexpression in human hepatoma cells. One ISG candidate, indoleamine 2,3-dioxygenase (IDO), an IFN-γ-induced enzyme catalyzing tryptophan degradation, efficiently reduced the level of intracellular HBV DNA without altering the steady-state level of viral RNA. Furthermore, expression of an enzymatically inactive IDO mutant did not inhibit HBV replication, and tryptophan supplementation in culture completely restored HBV replication in IDO-expressing cells, indicating that the antiviral effect elicited by IDO is mediated by tryptophan deprivation. Interestingly, IDO-mediated tryptophan deprivation preferentially inhibited viral protein translation and genome replication but did not significantly alter global cellular protein synthesis. Finally, tryptophan supplementation was able to completely restore HBV replication in IFN-γ- but not IFN-α-treated cells, which strongly argues that IDO is the primary mediator of IFN-γ-elicited antiviral response against HBV in human hepatocyte-derived cells.  相似文献   

15.
CD55 limits excessive complement activation on the host cell surface by accelerating the decay of C3 convertases. In this study, we observed that hepatitis C virus (HCV) infection of hepatocytes or HCV core protein expression in transfected hepatocytes upregulated CD55 expression at the mRNA and protein levels. Further analysis suggested that the HCV core protein or full-length (FL) genome enhanced CD55 promoter activity in a luciferase-based assay, which was further augmented in the presence of interleukin-6. Mutation of the CREB or SP-1 binding site on the CD55 promoter impaired HCV core protein-mediated upregulation of CD55. HCV-infected or core protein-transfected Huh7.5 cells displayed greater viability in the presence of CD81 and CD55 antibodies and complement. Biochemical analysis revealed that CD55 was associated with cell culture-grown HCV after purification by sucrose density gradient ultracentrifugation. Consistent with this, a polyclonal antibody to CD55 captured cell culture-grown HCV. Blocking antibodies against CD55 or virus envelope glycoproteins in the presence of normal human serum as a source of complement inhibited HCV infection. The inhibition was enhanced in the presence of both the antibodies and serum complement. Collectively, these results suggest that HCV induces and associates with a negative regulator of the complement pathway, a likely mechanism for immune evasion.  相似文献   

16.
Yoon JC  Lim JB  Park JH  Lee JM 《Journal of virology》2011,85(23):12557-12569
The distinct feature of hepatitis C virus (HCV) infection is a high incidence of chronicity. The reason for chronic HCV infection has been actively investigated, and impairment of innate and adaptive immune responses against HCV is proposed as a plausible cause. Whereas functional impairment of HCV-specific T cells is well characterized, the role and functional status of natural killer (NK) cells in each phase of HCV infection are still elusive. We therefore investigated whether direct interaction between NK cells and HCV-infected cells modulates NK cell function. HCV-permissive human hepatoma cell lines were infected with cell culture-generated HCV virions and cocultured with primary human NK cells. Cell-to-cell contact between NK cells and HCV-infected cells reduced NK cells' capacity to degranulate and lyse target cells, especially in the CD56(dim) NK cell subset, which is characterized by low-density surface expression of CD56. The decrease in degranulation capacity was correlated with downregulated expression of NK cell-activating receptors, such as NKG2D and NKp30, on NK cells. The ability of NK cells to produce and secrete gamma interferon (IFN-γ) also diminished after exposure to HCV-infected cells. The decline of IFN-γ production was consistent with the reduction of NK cell degranulation. In conclusion, cell-to-cell contact with HCV-infected cells negatively modulated functional capacity of NK cells, and the inhibition of NK cell function was associated with downregulation of NK-activating receptors on NK cell surfaces. These observations suggest that direct cell-to-cell interaction between NK cells and HCV-infected hepatocytes may impair NK cell function in vivo and thereby contribute to the establishment of chronic infection.  相似文献   

17.
Kanda T  Steele R  Ray R  Ray RB 《Journal of virology》2007,81(22):12375-12381
Beta interferon (IFN-beta) expression is triggered by double-stranded RNA, a common intermediate in the replication of many viruses including hepatitis C virus (HCV). The recent development of cell culture-grown HCV allowed us to analyze the IFN signaling pathway following virus infection. In this study, we have examined the IFN-beta signaling pathway following infection of immortalized human hepatocytes (IHH) with HCV genotype 1a (clone H77) or 2a (clone JFH1). We observed that IHH possesses a functional Toll-like receptor 3 pathway. HCV infection in IHH enhanced IFN-beta and IFN-stimulated gene 56 (ISG56) promoter activities; however, poly(I-C)-induced IFN-beta and ISG56 expression levels were modestly inhibited upon HCV infection. IHH infected with HCV (genotype 1a or 2a) exhibited various levels of translocation of IRF-3 into the nucleus. The upregulation of endogenous IFN-beta and 2',5'-oligoadenylate synthetase 1 mRNA expression was also observed in HCV-infected IHH. Subsequent studies suggested that HCV infection in IHH enhanced STAT1 and ISG56 protein expression. A functional antiviral response of HCV-infected IHH was observed by the growth-inhibitory role in vesicular stomatitis virus. Together, our results suggested that HCV infection in IHH induces the IFN signaling pathway, which corroborates observations from natural HCV infection in humans.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号