首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytotoxic T lymphocytes (CTL) recognize virus peptide fragments complexed with class I major histocompatibility complex (MHC) molecules on the surface of virus-infected cells. Recognition is mediated by a membrane-bound T-cell receptor (TCR) composed of alpha and beta chains. Studies of the CTL response to lymphocytic choriomeningitis virus (LCMV) in H-2b mice have revealed that three distinct viral epitopes are recognized by CTL of the H-2b haplotype and that all of the three epitopes are restricted by the Db MHC molecule. The immunodominant Db-restricted CTL epitope, located at LCMV glycoprotein amino acids 278 to 286, was earlier noted to be recognized by TCRs that consistently contained V alpha 4 segments but had heterogeneous V beta segments. Here we show that CTL clones recognizing the other two H-2Db-restricted epitopes, LCMV glycoprotein amino acids 34 to 40 and nucleoprotein amino acids 397 to 407 (defined in this study), utilize TCR alpha chains which do not belong to the V alpha 4 subfamily. Hence, usage of V alpha and V beta in the TCRs recognizing peptide fragments from one virus restricted by a single MHC molecule is not sufficiently homogeneous to allow manipulation of the anti-viral CTL response at the level of TCRs. The diversity of anti-viral CTL likely provides the host with a wider option for attacking virus-infected cells and prevents the emergence of virus escape mutants that might arise if TCRs specific for the virus were homogeneous.  相似文献   

2.
Replication of the genetically variable lymphocytic choriomeningitis virus (LCMV) gives rise to a pool of variant viruses. Under the selection pressure exerted by a strong but narrow repertoire of antiviral cytotoxic T-cells (CTL) i.e. monoclonal or polyclonal monoepitope, variant viruses emerge that contain point mutations in the nucleotide sequence encoding antigenic CTL epitopes; these variants can be selected in both infected mice and cell cultures. These mutations permit infected cells to escape CTL recognition by altering the ability of the mutant peptides to bind MHC class-I-molecules or by interfering with the ability of T-cell receptors to interact with the mutant peptide/MHC complex. Because viral infections often trigger a polyclonal repertoire of antiviral CTL to multiple epitopes, the likelihood of selection of CTL resistant variants is probably low, but not impossible. Our empirical observations suggest that antigenic variations, even if they only occur in a part of the available CTL epitope, may exert significant effects on the subtle biological equilibrium established between virus and host immune system. This can reduce immunological control of the pathogen population, and so permit persistence of viral infection and promote disease progression.  相似文献   

3.
MHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag. The 11-mer determinant adopts a highly bulged conformation with seven of the peptide side chains being solvent-exposed and available for TCR interaction. Such a complex potentially creates a structural challenge for TCR corecognition of both HLA-B*3501 and the peptide Ag. Surprisingly, unrelated B*3501 donors recognizing the 11-mer use identical or closely related alphabeta TCR sequences that share particular CDR3 motifs. Within the small number of dominant CTL clonotypes observed, each has discrete fine specificity for the exposed side chain residues of the peptide. The data show that bulged viral peptides are indeed immunogenic but suggest that the highly constrained TCR repertoire reflects a limit to TCR diversity when responding to some unusual MHC peptide ligands.  相似文献   

4.
Zhang N  Qi J  Feng S  Gao F  Liu J  Pan X  Chen R  Li Q  Chen Z  Li X  Xia C  Gao GF 《Journal of virology》2011,85(22):11709-11724
The presentation of viral epitopes to cytotoxic T lymphocytes (CTLs) by swine leukocyte antigen class I (SLA I) is crucial for swine immunity. To illustrate the structural basis of swine CTL epitope presentation, the first SLA crystal structures, SLA-1 0401, complexed with peptides derived from either 2009 pandemic H1N1 (pH1N1) swine-origin influenza A virus (S-OIV(NW9); NSDTVGWSW) or Ebola virus (Ebola(AY9); ATAAATEAY) were determined in this study. The overall peptide-SLA-1 0401 structures resemble, as expected, the general conformations of other structure-solved peptide major histocompatibility complexes (pMHC). The major distinction of SLA-1 0401 is that Arg(156) has a "one-ballot veto" function in peptide binding, due to its flexible side chain. S-OIV(NW9) and Ebola(AY9) bind SLA-1 0401 with similar conformations but employ different water molecules to stabilize their binding. The side chain of P7 residues in both peptides is exposed, indicating that the epitopes are "featured" peptides presented by this SLA. Further analyses showed that SLA-1 0401 and human leukocyte antigen (HLA) class I HLA-A 0101 can present the same peptides, but in different conformations, demonstrating cross-species epitope presentation. CTL epitope peptides derived from 2009 pandemic S-OIV were screened and evaluated by the in vitro refolding method. Three peptides were identified as potential cross-species influenza virus (IV) CTL epitopes. The binding motif of SLA-1 0401 was proposed, and thermostabilities of key peptide-SLA-1 0401 complexes were analyzed by circular dichroism spectra. Our results not only provide the structural basis of peptide presentation by SLA I but also identify some IV CTL epitope peptides. These results will benefit both vaccine development and swine organ-based xenotransplantation.  相似文献   

5.
The underlying generic properties of alphabeta TCRs that control MHC restriction remain largely unresolved. To investigate MHC restriction, we have examined the CTL response to a viral epitope that binds promiscuously to two human leukocyte Ags (HLAs) that differ by a single amino acid at position 156. Individuals expressing either HLA-B*3501 (156Leucine) or HLA-B*3508 (156Arginine) showed a potent CTL response to the 407HPVGEADYFEY417 epitope from EBV. Interestingly, the response was characterized by highly restricted TCR beta-chain usage in both HLA-B*3501+ and HLA-B*3508+ individuals; however, this conserved TRBV9+ beta-chain was associated with distinct TCR alpha-chains depending upon the HLA-B*35 allele expressed by the virus-exposed host. Functional assays confirmed that TCR alpha-chain usage determined the HLA restriction of the CTLs. Structural studies revealed significant differences in the mobility of the peptide when bound to HLA-B*3501 or HLA-B*3508. In HLA-B*3501, the bulged section of the peptide was disordered, whereas in HLA-B*3508 the bulged epitope adopted an ordered conformation. Collectively, these data demonstrate not only that mobile MHC-bound peptides can be highly immunogenic but can also stimulate an extremely biased TCR repertoire. In addition, TCR alpha-chain usage is shown to play a critical role in controlling MHC restriction between closely related allomorphs.  相似文献   

6.
The major histocompatibility complex (MHC)-restricted selection of T-cell epitopes of foot-and-mouth disease virus (FMDV) by individual cattle MHC class II DR (BoLA-DR) molecules was studied in a direct MHC-peptide binding assay. By in vitro priming of T lymphocytes derived from animals homozygous for both MHC class I and II, five T-cell epitopes were analyzed in the context of three MHC class II haplotypes. We found that the presentation of these T-cell epitopes was mediated by DR molecules, since blocking this pathway of antigen presentation using monoclonal antibody TH14B completely abolished the proliferative responses against the peptides. To study the DR-restricted presentation of these T-cell epitopes, a direct MHC-peptide binding assay on isolated cattle DR molecules was developed. Purified cattle MHC class II DR molecules of the BoLA-DRB3*0201, BoLA-DRB3*1101, and BoLA-DRB3*1201 alleles were isolated from peripheral blood mononuclear cells. For each allele, one of the identified T-cell epitopes was biotinylated, and used as a marker peptide for the development of a competitive MHC-peptide binding assay. Subsequently, the T-cell epitopes of FMDV with functionally defined MHC class II specificity were analyzed in this binding assay. The affinity of the epitopes to bind to certain DR molecules was significantly correlated to the capacity to induce T-cell proliferation. This demonstrated at the molecular level that the selection of individual T-cell epitopes found at the functional level was indeed the result of MHC restriction.  相似文献   

7.
Defects in major histocompatibility complex (MHC) class I-restricted antigen presentation are frequently observed in human cancers and result in escape of tumors from cytotoxic T lymphocyte (CTL) immune surveillance in mice. Here, we show the existence of a unique category of CTLs that can prevent this escape. The CTLs target an alternative repertoire of peptide epitopes that emerge in MHC class I at the surface of cells with impaired function of transporter associated with antigen processing (TAP), tapasin or the proteasome. These peptides, although derived from self antigens such as the commonly expressed Lass5 protein (also known as Trh4), are not presented by normal cells. This explains why they act as immunogenic neoantigens. The newly discovered epitopes can be exploited for immune intervention against processing-deficient tumors through adoptive T-cell transfer or peptide vaccination.  相似文献   

8.
CD8 T cells drive the protective immune response to lymphocytic choriomeningitis virus (LCMV) infection and are thus a determining force in the selection of viral variants. To examine how escape mutations affect the presentation and recognition of overlapping T-cell epitopes, we isolated an LCMV variant that is not recognized by T-cell receptor (TCR)-transgenic H-2Db-restricted LCMV GP33-41-specific cytotoxic T lymphocytes (CTL). The variant virus carried a single-amino-acid substitution (valine to alanine) at position 35 of the viral glycoprotein. This region of the LCMV glycoprotein encodes both the Db-restricted GP33-43 epitope and a second epitope (GP34-42) presented by the Kb molecule. We determined that the V-to-A CTL escape mutant failed to induce a Db GP33-43-specific CTL response and that Db-restricted GP33-43-specific CTL induced by the wild-type LCMV strain were unable to kill target cells infected with the variant LCMV strain. In contrast, the Kb-restricted response was much less affected. We found that the V-to-A substitution severely impaired peptide binding to Db but not to Kb molecules. Strikingly, the V-to-A mutation did not change any of the anchor residues, and the dramatic effect on binding was therefore unexpected. The strong decrease in Db binding explains why the variant virus escapes the Db GP33-43-specific response but still elicits the Kb-restricted response. These findings also illustrate that mutations within regions encoding overlapping T-cell epitopes can differentially affect the presentation and recognition of individual epitopes.  相似文献   

9.
An interesting property of certain peptides presented by major histocompatibility complex (MHC) molecules is their acquisition of a dual binding mode within the peptide binding groove. Using x-ray crystallography at 1.4 A resolution, we show here that the glucagon receptor-derived self-peptide pGR ((412)RRRWHRWRL(420)) is presented by the disease-associated human MHC class I subtype HLA-B*2705 in a dual conformation as well, with the middle of the peptide bent toward the floor of the peptide binding groove of the molecule in both binding modes. The conformations of pGR are compared here with those of another self-peptide (pVIPR, RRKWRRWHL) that is also displayed in two binding modes by HLA-B*2705 antigens and with that of the viral peptide pLMP2 (RRRWRRLTV). Conserved structural features suggest that the N-terminal halves of the peptides are crucial in allowing cytotoxic T lymphocyte (CTL) cross-reactivity. In addition, an analysis of T cell receptors (TCRs) from pGR- or pVIPR-directed, HLA-B27-restricted CTL clones demonstrates that TCR from distinct clones but with comparable reactivity may share CDR3alpha but not CDR3beta regions. Therefore, the cross-reactivity of these CTLs depends on TCR-CDR3alpha, is modulated by TCR-CDR3beta sequences, and is ultimately a consequence of the conformational dimorphism that characterizes binding of the self-peptides to HLA-B*2705. These results lend support to the concept that conformational dimorphisms of MHC class I-bound peptides might be connected with the occurrence of self-reactive CTL.  相似文献   

10.
Human leukocyte antigen (HLA)-I molecules can present long peptides, yet the mechanisms by which T-cell receptors (TCRs) recognize featured pHLA-I landscapes are unclear. We compared the binding modes of three distinct human TCRs, CA5, SB27, and SB47, complexed with a “super-bulged” viral peptide (LPEPLPQGQLTAY) restricted by HLA-B*35:08. The CA5 and SB27 TCRs engaged HLA-B*35:08LPEP similarly, straddling the central region of the peptide but making limited contacts with HLA-B*35:08. Remarkably, the CA5 TCR did not contact the α1-helix of HLA-B*35:08. Differences in the CDR3β loop between the CA5 and SB27 TCRs caused altered fine specificities. Surprisingly, the SB47 TCR engaged HLA-B*35:08LPEP using a completely distinct binding mechanism, namely “bypassing” the bulged peptide and making extensive contacts with the extreme N-terminal end of HLA-B*35:08. This docking footprint included HLA-I residues not observed previously as TCR contact sites. The three TCRs exhibited differing patterns of alloreactivity toward closely related or distinct HLA-I allotypes. Thus, the human T-cell repertoire comprises a range of TCRs that can interact with “bulged” pHLA-I epitopes using unpredictable strategies, including the adoption of atypical footprints on the MHC-I.  相似文献   

11.
Lymphocytic choriomeningitis virus infection of H-2(b) mice generates a strong CD8(+) CTL response mainly directed toward three immunodominant epitopes, one of which, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. This CTL response acts as a selective agent for the emergence of viral escape variants. These variants generate altered peptide ligands (APLs) that, when presented by class I MHC molecules, antagonize CTL recognition and ultimately allow the virus to evade the cellular immune response. The emergence of APLs of the gp33 epitope is particularly advantageous for LCMV, as it allows viral escape in the context of both H-2D(b) and H-2K(b) MHC class I molecules. We have determined crystal structures of three different APLs of gp33 in complex with both H-2D(b) and H-2K(b). Comparison between these APL/MHC structures and those of the index gp33 peptide/MHC reveals the structural basis for three different strategies used by LCMV viral escape mutations: 1) conformational changes in peptide and MHC residues that are potential TCR contacts, 2) impairment of APL binding to the MHC peptide binding cleft, and 3) introduction of subtle changes at the TCR/pMHC interface, such as the removal of a single hydroxyl group.  相似文献   

12.
Cytotoxic T lymphocyte (CTL) responses against influenza A virus in C57BL/6 mice are dominated by a small number of viral peptides among many that are capable of binding to major histocompatibility complex (MHC) class I molecules. The basis of this limited immune recognition is unknown. Here, we present X-ray structures of MHC class I molecules in complex with two immunodominant epitopes (PA(224-233)/D(b) and PB1(703-711)/K(b)) and one non-immunogenic epitope (HA(468-477)/D(b)) of the influenza A virus. The immunodominant peptides are each characterized by a bulge at the C terminus, lifting P6 and P7 residues out of the MHC groove, presenting featured structural elements to T-cell receptors (TCRs). Immune recognition of PA(224-233)/D(b) will focus largely on the exposed P7 arginine residue. In contrast, the non-immunogenic HA(468-477) peptide lacks prominent features in this C-terminal bulge. In the K(b)-bound PB1(703-711) epitope, the bulge results from a non-canonical binding motif, such that the mode of presentation of this peptide strongly resembles that of D(b)-bound peptides. Given that PA(224-233)/D(b), PB1(703-711)/K(b) and the previously defined NP(366-374)/D(b) epitopes dominate the primary response to influenza A virus in C57BL/6 mice, our findings indicate that residues of the C-terminal bulge are important in selection of the immunodominant CTL repertoire.  相似文献   

13.
We used a silicon-based biosensor, a microphysiometer, to measure real-time extracellular acidification rate signals associated with T lymphocyte responses to peptide ligands interacting with the T-cell receptor (TCR). We compared these effector responses with those of interferon-gamma (IFN-gamma) production, and T-cell proliferation. Within minutes, major histocompatibility complex (MHC)-bound peptides on antigen-presenting cells (APCs) engaged the TCR to increase acidification rates of the extracellular media was measured by microphysiometer. We exposed two myelin peptide-specific human T-cell clones, MSF132E11 (DRB1*1501 restricted) and TOM3A6 (DRB5*0101 restricted), to truncated analogues of the parent MBP 84-102 peptide, in the presence of MHC restricted human antigen-presenting cells, and measured the extracellular acidification rate signal changes, IFN-gamma production and T-cell proliferation. The core epitopes recognized by these clones were identified by microphysiometer and found to be MBP 88-100 and MBP 91-100, respectively. These epitopes were identical to those identified by the IFN-gamma and proliferation assays. We conclude that measurement of real-time extracellular acidification rate signals by the microphysiometer may facilitate rapid identification of human T-cell epitopes involved in immune disorders and the development of specific T-cell antagonists.  相似文献   

14.
Peptide presentation by major histocompatibility complex (MHC) molecules is of central importance for immune responses, which are triggered through recognition of peptide-loaded MHC molecules (pMHC) by cellular ligands such as T-cell receptors (TCR). However, a unifying link between structural features of pMHC and cellular responses has not been established. Instead, pMHC/TCR binding studies suggest conformational and/or flexibility changes of the binding partners as a possible cause of differential T-cell stimulation, but information on real-time dynamics is lacking. We therefore probed the real-time dynamics of a MHC-bound nonapeptide (m9), by combining time-resolved fluorescence depolarization and molecular dynamics simulations. Here we show that the nanosecond dynamics of this peptide presented by two human MHC class I subtypes (HLA-B*2705 and HLA-B*2709) with differential autoimmune disease association varies dramatically, despite virtually identical crystal structures. The peptide dynamics is linked to the single, buried polymorphic residue 116 in the peptide binding groove. Pronounced peptide flexibility is seen only for the non-disease-associated subtype HLA-B*2709, suggesting an entropic control of peptide recognition. Thermodynamic data obtained for two additional peptides support this hypothesis.  相似文献   

15.
Control of a naturally occurring lentivirus, equine infectious anemia virus (EIAV), occurs in most infected horses and involves MHC class I-restricted, virus-specific CTL. Two minimal 12-aa epitopes, Env-RW12 and Gag-GW12, were evaluated for presentation by target cells from horses with an equine lymphocyte Ag-A1 (ELA-A1) haplotype. Fifteen of 15 presented Env-RW12 to CTL, whereas 11 of 15 presented Gag-GW12. To determine whether these epitopes were presented by different molecules, MHC class I genes were identified in cDNA clones from Arabian horse A2152, which presented both epitopes. This horse was selected because it is heterozygous for the SCID trait and is used to breed heterozygous females. Offspring with SCID are used as recipients for CTL adoptive transfer, and normal offspring are used for CTL induction. Four classical and three putative nonclassical full-length MHC class I genes were found. Human 721.221 cells transduced with retroviral vectors expressing each gene had equine MHC class I on their surface. Following peptide pulsing, only cells expressing classical MHC class I molecule 7-6 presented Env-RW12 and Gag-GW12 to CTL. Unlabeled peptide inhibition of (125)I-labeled Env-RW12 binding to 7-6-transduced cells demonstrated that Env-RW12 affinity was 15-fold higher than Gag-GW12 affinity. Inhibition with truncated Env-RW12 demonstrated that amino acid positions 1 and 12 were necessary for binding, and single substitutions identified positions 2 and 3 as possible primary anchor residues. Since MHC class I 7-6 presented both epitopes, outbred horses with this allele can be immunized with these epitopes to optimize CTL responses and evaluate their effectiveness against lentiviral challenge.  相似文献   

16.
The consequences of severely limiting the T-cell receptor (TCR) repertoire available for the response to intranasal infection with an influenza A virus or with Sendai virus have been analyzed by using H-2k mice (TG8.1) transgenic for a TCR beta-chain gene (V beta 8.1D beta 2J beta 2.3C beta 2). Analyzing the prevalence of V beta 8.1+ CD8+ T cells in lymph node cultures from nontransgenic (non-TG) H-2k controls primed with either virus and then stimulated in vitro with the homologous virus or with anti-CD3 epsilon showed that this TCR is not normally selected from the CD8+ T-cell repertoire during these infections. However, the TG8.1 mice cleared both viruses and generated virus-specific effector cytotoxic T lymphocytes (CTL) and memory CTL precursors, though the responses were delayed compared with the non-TG controls. Depletion of the CD4+ T-cell subset had little effect on the course of influenza virus infection but substantially slowed the development of the Sendai virus-specific CTL response and virus elimination in both the TG8.1 and non-TG mice, indicating that CD4+ helpers are promoting the CD8+ T-cell response in the Sendai virus model. Even so, restricting the available T-cell repertoire to lymphocytes expressing a single TCR beta chain still allows sufficient TCR diversity for CD8+ T cells (acting in the presence or absence of the CD4+ subset) to limit infection with an influenza A virus and a parainfluenza type 1 virus.  相似文献   

17.
Viruses like HIV and SIV escape from containment by CD8(+) T lymphocytes through generating mutations that interfere with epitope peptide:MHC class I binding. However, mutations in some viral epitopes are selected for that have no impact on this binding. We explored the mechanism underlying the evolution of such epitopes by studying CD8(+) T lymphocyte recognition of a dominant Nef epitope of SIVmac251 in infected Mamu-A*02(+) rhesus monkeys. Clonal analysis of the p199RY-specific CD8(+) T lymphocyte repertoire in these monkeys indicated that identical T cell clones were capable of recognizing wild-type (WT) and mutant epitope sequences. However, we found that the functional avidity of these CD8(+) T lymphocytes for the mutant peptide:Mamu-A*02 complex was diminished. Using surface plasmon resonance to measure the binding affinity of the p199RY-specific TCR repertoire for WT and mutant p199RY peptide:Mamu-A*02 monomeric complexes, we found that the mutant p199RY peptide:Mamu-A*02 complexes had a lower affinity for TCRs purified from CD8(+) T lymphocytes than did the WT p199RY peptide:Mamu-A*02 complexes. These studies demonstrated that differences in TCR affinity for peptide:MHC class I ligands can alter functional p199RY-specific CD8(+) T lymphocyte responses to mutated epitopes, decreasing the capacity of these cells to contain SIVmac251 replication.  相似文献   

18.
Immunodominance is a common feature of Ag-specific CTL responses to infection or vaccines. Understanding the basis of immunodominance is crucial to understanding cellular immunity and viral evasion mechanisms and will provide a rational approach for improving HIV vaccine design. This study was performed comparing CTLs specific for the SIV Gag p11C (dominant) and SIV Pol p68A (subdominant) epitopes that are consistently generated in Mamu-A*01(+) rhesus monkeys exposed to SIV proteins. Additionally, vaccinated monkeys were used to prevent any issues of antigenic variation or dynamic changes in CTL responses by continuous Ag exposure. Analysis of the TCR repertoire revealed the usage of higher numbers of TCR clones by the dominant p11C-specific CTL population. Preferential usage of specific TCRs and the in vitro functional TCR-alpha- and -beta-chain-pairing assay suggests that every peptide/MHC complex may only be recognized by a limited number of unique combinations of alpha- and beta-chain pairs. The wider array of TCR clones used by the dominant p11C-specific CTL population might be explained by the higher probability of generating those specific TCR chain pairs. Our data suggest that Ag-specific naive T cell precursor frequency may be predetermined and that this process dictates immunodominance of SIV-specific CD8(+) T cell responses. These findings will aid in understanding immunodominance and designing new approaches to modulate CTL responses.  相似文献   

19.
Antigenic peptides recognized by virus-specific cytotoxic T lymphocytes (CTLs) are presented by major histocompatibility complex (MHC; or human leukocyte antigen [HLA] in humans) molecules, and the peptide selection and presentation strategy of the host has been studied to guide our understanding of cellular immunity and vaccine development. Here, a severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid (N) protein-derived CTL epitope, N1 (QFKDNVILL), restricted by HLA-A*2402 was identified by a series of in vitro studies, including a computer-assisted algorithm for prediction, stabilization of the peptide by co-refolding with HLA-A*2402 heavy chain and β2-microglobulin (β2m), and T2-A24 cell binding. Consequently, the antigenicity of the peptide was confirmed by enzyme-linked immunospot (ELISPOT), proliferation assays, and HLA-peptide complex tetramer staining using peripheral blood mononuclear cells (PBMCs) from donors who had recovered from SARS donors. Furthermore, the crystal structure of HLA-A*2402 complexed with peptide N1 was determined, and the featured peptide was characterized with two unexpected intrachain hydrogen bonds which augment the central residues to bulge out of the binding groove. This may contribute to the T-cell receptor (TCR) interaction, showing a host immunodominant peptide presentation strategy. Meanwhile, a rapid and efficient strategy is presented for the determination of naturally presented CTL epitopes in the context of given HLA alleles of interest from long immunogenic overlapping peptides.In 2003, severe and acute respiratory syndrome (SARS), emerging from China, caused a global outbreak, affecting 29 countries, with over 8,000 human cases and greater than 800 deaths (5, 9, 24, 33, 37). Thanks to the unprecedented global collaboration coordinated by the WHO, SARS coronavirus (SARS-CoV), a novel member of Coronaviridae family, was rapidly confirmed to be the etiological agent for the SARS epidemic (36). Soon after the identification of the causative agent, SARS was controlled and then quickly announced to be conquered through international cooperation on epidemiological processes (9). However, the role that human immunity played in the clearance of SARS-CoV and whether the memory immunity will persist for the potential reemergence of SARS are not yet well understood.In viral infections, CD8+ cytotoxic T lymphocytes (CTLs) are essential to the control of infectious disease. Virus-specific CD8+ T cells recognize peptides which have 8 to 11 amino acids, in most cases presented by major histocompatibility complex (MHC) class I molecules. However, identification of virus-specific CD8+ T-cell epitopes remains a complicated and time-consuming process. Various strategies have been developed to define CTL epitopes so far. One of the most common practices to determine immunodominant CTL epitopes on a large scale is based on screening and functional analysis of overlapping 15- to 20-mer peptides covering an entire viral proteome or a given set of immunogenic proteins (19, 23, 32). However, peptides identified through this method are too long to be naturally processed CTL epitopes, and the definition of MHC class I restriction of these peptides still requires further analysis. Rapid and efficient strategies should be developed for the determination of naturally presented CTL epitopes in the context of any given HLA allele of interest. Furthermore, no other HLA alleles except HLA-A2-restricted CTL epitopes have been reported for SARS-CoV-derived proteins (16, 22, 31, 43, 46, 47, 49). This is primarily because of the limitation of the experimental methods for the other HLA alleles. HLA-A24 is one of the most common HLA-A alleles throughout the world, especially in East Asia, where SARS-CoV emerged, second only to HLA-A2 (30). The development of a fast and valid method to screen and identify HLA-A24-restricted epitopes would greatly contribute to the understanding of the specific CTL epitope-stimulated response and widen the application of the epitope-based vaccine among a more universal population (17). A genomewide scanning of HLA binding peptides from SARS-CoV has been performed by Sylvester-Hvid and colleagues, through which dozens of peptides with major HLA supertypes, including HLA-A24 binding capability, have been identified (41).There are strong indications that different peptide ligands, such as peptides with distinct immunodominance, can elicit a diverse specific T-cell repertoire, and even subtle changes in the same peptide can have a profound effect on the response (25, 44). Furthermore, a broader T-cell receptor (TCR) repertoire to a virus-specific peptide-MHC complex can keep the host resistant to the virus and limit the emergence of virus immune-escape mutants (29, 34, 38). Recent studies have demonstrated that the diversity of the selected TCR repertoire (designated as T-cell receptor bias) is clearly influenced by the conformational characteristics of the bound peptide in the MHC groove. Peptides with a flat, featureless surface when presented by MHC generate only limited TCR diversity in a mature repertoire, while featured peptides with exposed residues (without extreme bulges) protruding outside the pMHC landscapes are rather associated with the more diverse T-cell repertoire (15, 28, 39, 44, 45). Therefore, being able to determine the binding features of a peptide to MHC and describe the peptide-MHC topology will help us understand the immunodominance of a given peptide and demonstrate the peptide presentation strategy of the host.Structural proteins of SARS-CoV, such as spike, membrane, and nucleocapsid (N), have been demonstrated as factors of the antigenicity of the virus, as compared with the nonstructural proteins (12, 20). Coronavirus nucleocapsid (N) protein is a highly phosphorylated protein which not only is responsible for construction of the ribonucleoprotein complex by interacting with the viral genome and regulating the synthesis of viral RNA and protein, but also serves as a potent immunogen that induces humoral and cellular immunity (13, 14, 26, 48). The CD8+ T-cell epitopes derived from SARS-CoV N protein defined so far mainly cluster in two major immunogenic regions (4, 21, 23, 31, 32, 43). One of them, residues 219 to 235, comprises most of the N protein-derived minimal CTL epitopes identified so far—N220-228, N223-231, N227-235, etc.—all of which are HLA-A*0201 restricted (4, 43). The other region, residues 331 to 365, also includes high-immunogenicity peptides that can induce memory T-lymphocyte responses against SARS-CoV (21, 23, 32). However, until now, no minimal CTL epitope with a given HLA allele restriction has been investigated in this region.Here, based on previously defined immunogenic regions derived from SARS-CoV N protein (21), we identified an HLA-A*2402-restricted epitope, N1 (residues 346 to 354), in the region through a distinct strategy using structural and functional approaches. The binding affinity with HLA-A*2402 molecules and the cellular immunogenicity of the peptide were demonstrated in a series of assays. The X-ray crystal structure of HLA-A*2402 complexed with peptide N1 has shown a novel host strategy to present an immunodominant CTL epitope by intrachain hydrogen bond as a featured epitope.  相似文献   

20.
A polyepitopic CD8+ T-cell response is critical for the control of hepatitis B virus (HBV) infection. The HBV X protein (HBx) is a multifunctional protein that is important for the viral life cycle and for host-virus interactions. The aim of this study was to analyze the immunogenicity and dominance of various HLA-A*0201-restricted HBx-derived epitopes. For this purpose, we immunized HLA-A*0201-transgenic mice with HBx-derived peptides and DNA. This is a powerful model for studying the induction of HLA-A*0201-restricted immune responses in vivo, as these mice possess a cytotoxic T lymphocyte (CTL) repertoire representative of HLA-A2.1 individuals. We used cytotoxic tests and enzyme-linked immunosorbent spot (ELISPOT) assays to study the induction of specific cytotoxic and interferon (IFN)-gamma-secreting T cells. This allowed us to classify the HBx epitopes according to their T-cell activation capacity. After endogenous processing of the antigen synthesized in vivo after DNA-based immunization, we found that the HBx-specific T-cell response is targeted against one immunodominant epitope. Furthermore, following peptide immunization, we identified six additional novel subdominant T-cell epitopes. Inclusion of well-characterized epitopic sequences of HBx in a new vaccine for chronic HBV infections could help to broaden the T-cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号