首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a novel in vivo superinfection fitness assay to examine superinfection dynamics and the role of virulence in superinfection fitness. This assay involves controlled, sequential infections of a natural vertebrate host, Oncorhynchus mykiss (rainbow trout), with variants of a coevolved viral pathogen, infectious hematopoietic necrosis virus (IHNV). Intervals between infections ranged from 12 h to 7 days, and both frequency of superinfection and viral replication levels were examined. Using virus genotype pairs of equal and unequal virulence, we observed that superinfection generally occurred with decreasing frequency as the interval between exposures to each genotype increased. For both the equal-virulence and unequal-virulence genotype pairs, the frequency of superinfection in most cases was the same regardless of which genotype was used in the primary exposure. The ability to replicate in the context of superinfection also did not differ between the genotypes of equal or unequal virulence tested here. For both genotype pairs, the mean viral load of the secondary virus was significantly reduced in superinfection while primary virus replication was unaffected. Our results demonstrate, for the two genotype pairs examined, that superinfection restriction does occur for IHNV and that higher virulence did not correlate with a significant difference in superinfection fitness. To our knowledge, this is the first assay to examine the role of virulence of an RNA virus in determining superinfection fitness dynamics within a natural vertebrate host.  相似文献   

2.
3.
Understanding the evolution of virulence for RNA viruses is essential for developing appropriate control strategies. Although it has been usually assumed that virulence is a consequence of within-host replication of the parasite, viral strains may be highly virulent without experiencing large accumulation as a consequence of immunopathological host responses. Using two strains of Tobacco etch potyvirus (TEV) that show a negative relationship between virulence and accumulation rate, we first explored the evolution of virulence and fitness traits during simple and mixed infections. Short-term evolution experiments initiated with each strain independently confirmed the genetic and evolutionary stability of virulence and viral load, although infectivity significantly increased for both strains. Second, competition experiments between hypo- and hypervirulent TEV strains have shown that the outcome of competition is driven by differences in replication rate. A simple mathematical model has been developed to analyze the dynamics of these two strains during coinfection. The model qualitatively reproduced the experimental results using biologically meaningful parameters. Further analyses of the model also revealed a wide parametric region in which a low-fitness but hypovirulent virus can still outcompete a high-fitness but hypervirulent one. These results provide additional support to the observation that virulence and within-host replication may not necessarily be strongly tied in plant RNA viruses.  相似文献   

4.
Pathogens have evolved diverse strategies to maximize their transmission fitness. Here we investigate these strategies for directly transmitted pathogens using mathematical models of disease pathogenesis and transmission, modeling fitness as a function of within- and between-host pathogen dynamics. The within-host model includes realistic constraints on pathogen replication via resource depletion and cross-immunity between pathogen strains. We find three distinct types of infection emerge as maxima in the fitness landscape, each characterized by particular within-host dynamics, host population contact network structure, and transmission mode. These three infection types are associated with distinct non-overlapping ranges of levels of antigenic diversity, and well-defined patterns of within-host dynamics and between-host transmissibility. Fitness, quantified by the basic reproduction number, also falls within distinct ranges for each infection type. Every type is optimal for certain contact structures over a range of contact rates. Sexually transmitted infections and childhood diseases are identified as exemplar types for low and high contact rates, respectively. This work generates a plausible mechanistic hypothesis for the observed tradeoff between pathogen transmissibility and antigenic diversity, and shows how different classes of pathogens arise evolutionarily as fitness optima for different contact network structures and host contact rates.  相似文献   

5.
Reduced genetic variation among hosts may favour the emergence of virulent infectious diseases by enhancing pathogen replication and its associated virulence due to adaptation to a limited set of host genotypes. Here, we test this hypothesis using experimental evolution of a mouse-specific retroviral pathogen, Friend virus (FV) complex. We demonstrate rapid fitness (i.e. viral titre) and virulence increases when FV complex serially infects a series of inbred mice representing the same genotype, but not when infecting a diverse array of inbred mouse strains modelling the diversity in natural host populations. Additionally, a single infection of a different host genotype was sufficient to constrain the emergence of a high fitness/high virulence FV complex phenotype in these experiments. The potent inhibition of viral fitness and virulence was associated with an observed loss of the defective retroviral genome (spleen focus-forming virus), whose presence exacerbates infection and drives disease in susceptible mice. Results from our experiments provide an important first step in understanding how genetic variation among vertebrate hosts influences pathogen evolution and suggests that serial exposure to different genotypes within a single host species may act as a constraint on pathogen adaptation that prohibits the emergence of more virulent infections. From a practical perspective, these results have implications for low-diversity host populations such as endangered species and domestic animals.  相似文献   

6.
Tradeoff theory, which postulates that virulence provides both transmission costs and benefits for pathogens, has become widely adopted by the scientific community. Although theoretical literature exploring virulence-tradeoffs is vast, empirical studies validating various assumptions still remain sparse. In particular, truncation of transmission duration as a cost of virulence has been difficult to quantify with robust controlled in vivo studies. We sought to fill this knowledge gap by investigating how transmission rate and duration were associated with virulence for infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). Using host mortality to quantify virulence and viral shedding to quantify transmission, we found that IHNV did not conform to classical tradeoff theory. More virulent genotypes of the virus were found to have longer transmission durations due to lower recovery rates of infected hosts, but the relationship was not saturating as assumed by tradeoff theory. Furthermore, the impact of host mortality on limiting transmission duration was minimal and greatly outweighed by recovery. Transmission rate differences between high and low virulence genotypes were also small and inconsistent. Ultimately, more virulent genotypes were found to have the overall fitness advantage, and there was no apparent constraint on the evolution of increased virulence for IHNV. However, using a mathematical model parameterized with experimental data, it was found that host culling resurrected the virulence tradeoff and provided low virulence genotypes with the advantage. Human-induced or natural culling, as well as host population fragmentation, may be some of the mechanisms by which virulence diversity is maintained in nature. This work highlights the importance of considering non-classical virulence tradeoffs.  相似文献   

7.
Trade-offs between different components of a pathogen''s replication and transmission cycle are thought to be common. A number of studies have identified trade-offs that emerge across scales, reflecting the tension between strategies that optimize within-host proliferation and large-scale population spread. Most of these studies are theoretical in nature, with direct experimental tests of such cross-scale trade-offs still rare. Here, we report an analysis of avian influenza A viruses across scales, focusing on the phenotype of temperature-dependent viral persistence. Taking advantage of a unique dataset that reports both environmental virus decay rates and strain-specific viral kinetics from duck challenge experiments, we show that the temperature-dependent environmental decay rate of a strain does not impact within-host virus load. Hence, for this phenotype, the scales of within-host infection dynamics and between-host environmental persistence do not seem to interact: viral fitness may be optimized on each scale without cross-scale trade-offs. Instead, we confirm the existence of a temperature-dependent persistence trade-off on a single scale, with some strains favouring environmental persistence in water at low temperatures while others reduce sensitivity to increasing temperatures. We show that this temperature-dependent trade-off is a robust phenomenon and does not depend on the details of data analysis. Our findings suggest that viruses might employ different environmental persistence strategies, which facilitates the coexistence of diverse strains in ecological niches. We conclude that a better understanding of the transmission and evolutionary dynamics of influenza A viruses probably requires empirical information regarding both within-host dynamics and environmental traits, integrated within a combined ecological and within-host framework.  相似文献   

8.
Given the parasitic nature of viruses, it is sometimes assumed that rates of viral replication and dissemination within hosts (within-host fitness) correlate with virulence. However, there is currently little empirical evidence supporting this principle. To test this, we quantified the fitness and virulence of 21 single- or double-nucleotide mutants of the vesicular stomatitis virus in baby hamster kidney cells (BHK-21). We found that, overall, these two traits correlated positively, but significant outliers were identified. Particularly, a single mutation in the conserved C terminus of the N nucleocapsid (U1323A) had a strongly deleterious fitness effect but did not alter or even slightly increased virulence. We also found a double mutant of the M matrix protein and G glycoprotein (U2617G/A3802G mutant) with high fitness yet low virulence. We further characterized these mutants in primary cultures from mouse brain cells and in vivo and found that their relative fitness values were similar to those observed in BHK-21 cells. The mutations had weak effects on the virus-induced death rate of total brain cells, although they specifically reduced neuron death rates. Furthermore, increased apoptosis levels were detected in neurons infected with the U2617G/A3802G mutant, consistent with its known inability to block interferon secretion. In vivo, this mutant had reduced virulence and, despite its low brain titer, it retained a relatively high fitness value owing to its ability to suppress competitor viruses. Overall, our results are in broad agreement with the notion that viral fitness and virulence should be positively correlated but show that certain mutations can break this association and that the fitness-virulence relationship can depend on complex virus-host and virus-virus interactions.  相似文献   

9.
HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show the importance of taking into account the transmission chain when estimating correlations between infection traits. The fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other infectious diseases.  相似文献   

10.
Parasite virulence evolution is shaped by both within-host and population-level processes yet the link between these differing scales of infection is often neglected. Population structure and heterogeneity in both parasites and hosts will affect how hosts are exploited by pathogens and the intensity of infection. Here, it is shown how the degree of relatedness among parasites together with epidemiological parameters such as pathogen yield and longevity influence the evolution of virulence. Furthermore, the role of kin competition and the degree of cheating within highly structured parasite populations also influences parasite fitness and infectivity patterns. Understanding how the effects of within-host processes scale up to affect the epidemiology has importance for understanding host-pathogen interactions.  相似文献   

11.
Successful replication within an infected host and successful transmission between hosts are key to the continued spread of most pathogens. Competing selection pressures exerted at these different scales can lead to evolutionary trade-offs between the determinants of fitness within and between hosts. Here, we examine such a trade-off in the context of influenza A viruses and the differential pressures exerted by temperature-dependent virus persistence. For a panel of avian influenza A virus strains, we find evidence for a trade-off between the persistence at high versus low temperatures. Combining a within-host model of influenza infection dynamics with a between-host transmission model, we study how such a trade-off affects virus fitness on the host population level. We show that conclusions regarding overall fitness are affected by the type of link assumed between the within- and between-host levels and the main route of transmission (direct or environmental). The relative importance of virulence and immune response mediated virus clearance are also found to influence the fitness impacts of virus persistence at low versus high temperatures. Based on our results, we predict that if transmission occurs mainly directly and scales linearly with virus load, and virulence or immune responses are negligible, the evolutionary pressure for influenza viruses to evolve toward good persistence at high within-host temperatures dominates. For all other scenarios, influenza viruses with good environmental persistence at low temperatures seem to be favored.  相似文献   

12.
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host’s immune system influences the pathogen’s transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence–transmission trade-offs and evolution in vector-borne pathogen–host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the \({\mathcal {R}}_0\) maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen \({\mathcal {R}}_0\), but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.  相似文献   

13.
Many viruses and bacteria are known to evolve rapidly over the course of an infection. However, epidemiological studies generally assume that within-host evolution is an instantaneous process. We argue that the dynamics of within-host evolution has implications at the within-host and at the between-host levels. We first show that epidemiologists should consider within-host evolution, notably because it affects the genotype of the pathogen that is transmitted. We then present studies that investigate evolution at the within-host level and examine the extent to which these studies can help to understand infection traits involved in the epidemiology (e.g. transmission rate, virulence, recovery rate). Finally, we discuss how new techniques for data acquisition can open new perspectives for empirical and theoretical research.  相似文献   

14.
How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence.  相似文献   

15.
According to current thinking, a parasite's transmission mode will be a major determinant of virulence, defined as the harm induced by parasites to their hosts. With horizontal transmission, virulence will increase as a byproduct of a trade-off between fitness gained through increased among-host transmission (infectivity) and fitness lost through increased virulence. With vertical transmission, virulence will decrease because a parasite's reproductive potential will be maximized only by decreasing harm to the host, allowing parasite transmission to more host offspring. To test both predictions, we transmitted barley stripe mosaic virus (BSMV) horizontally and then vertically in its host, barley (Hordeum vulgare). After four generations of horizontal transmission, we observed a nearly twofold increase in horizontal infectivity and nearly tripled virulence. After three generations of subsequent vertical transmission, we observed a modest (16%) increase in vertical transmissibility and a large (40%) reduction in virulence. Increased horizontal transmission is often due to increased pathogen replication which, in turn, causes increased virulence. However, we found no correlation between within-host virus concentration and virulence, indicating that the observed changes in virulence were not due to changes in viral titer. Finally, horizontally transmitted BSMV had reduced vertical transmission and vertically transmitted BSMV had reduced horizontal infectivity. These two observations suggest that, in nature, in different host populations with varying opportunities for horizontal and vertical transmission, different viral strains may be favored.  相似文献   

16.
Bacterial virulence is a multifaceted trait where the interactions between pathogen and host factors affect the severity and outcome of the infection. Toxin secretion is central to the biology of many bacterial pathogens and is widely accepted as playing a crucial role in disease pathology. To understand the relationship between toxicity and bacterial virulence in greater depth, we studied two sequenced collections of the major human pathogen Staphylococcus aureus and found an unexpected inverse correlation between bacterial toxicity and disease severity. By applying a functional genomics approach, we identified several novel toxicity-affecting loci responsible for the wide range in toxic phenotypes observed within these collections. To understand the apparent higher propensity of low toxicity isolates to cause bacteraemia, we performed several functional assays, and our findings suggest that within-host fitness differences between high- and low-toxicity isolates in human serum is a contributing factor. As invasive infections, such as bacteraemia, limit the opportunities for onward transmission, highly toxic strains could gain an additional between-host fitness advantage, potentially contributing to the maintenance of toxicity at the population level. Our results clearly demonstrate how evolutionary trade-offs between toxicity, relative fitness, and transmissibility are critical for understanding the multifaceted nature of bacterial virulence.  相似文献   

17.
Pathogen species with high mutation rates are likely to accumulate deleterious mutations that reduce their reproductive potential within the host. By altering the within-host growth rate of the pathogen, the deleterious mutation load has the potential to affect epidemiological properties such as prevalence, mean pathogen load, and the mean duration of infections. Here, I examine an epidemiological model that allows for multiple segregating mutations that affect within-host replication efficiency. The model demonstrates a complex range of outcomes depending on pathogen mutation rate, including two distinct, widely separated mutation rates associated with high pathogen prevalence. The low mutation rate prevalence peak is associated with small amounts of genetic diversity within the pathogen population, relatively stable prevalence and infection dynamics, and genetic variation partitioned between hosts. The high mutation rate peak is characterized by considerable genetic diversity both within and between hosts, relatively frequent invasions by more virulent types, and is qualitatively similar to an RNA virus quasispecies. The two prevalence peaks are separated by a valley where natural selection favors evolution toward the optimal within-host state, which is associated with high virulence and relatively rapid host mortality. Both chronic and acute infections are examined using stochastic forward simulations.  相似文献   

18.
Aquabirnaviruses, such as the infectious pancreatic necrosis virus (IPNV), Novirhabdoviruses, such as the infectious hematopoiteic necrosis virus (IHNV) and the viral hemorrhagic septicemia virus (VHSV), cause considerable losses to the salmonid industry worldwide. Coinfections of 2 viruses have been described, but the interactions between rhabdoviruses and birnaviruses have not been examined closely. Using virus titration, flow cytometry and RT-PCR assays, we compared the effect of IPNV on the replication of IHNV and VHSV in tissue culture cells. RT-PCR assays indicated that simultaneous infection of IPNV with VHSV does not affect the replication of the rhabdovirus either in the first or successive passages; the infective titers were similar in single and double infections. In contrast, coinfection of IPNV with IHNV induced a fall in infectivity, with reduced expression of IHNV viral antigens in BF-2 cells from Lepomis macrochirus and a loss of 4.5 log10 units of the infective titer after 3 successive passages. It was possible to stimulate BF-2 cells to produce significant interferon-like activity against IHNV but not against VHSV.  相似文献   

19.
Interferons (IFNs) are key controllers of viral replication, with intact IFN responses suppressing virus growth and spread. Using the murine norovirus (MNoV) system, we show that IFNs exert selective pressure to limit the pathogenic evolutionary potential of this enteric virus. In animals lacking type I IFN signaling, the nonlethal MNoV strain CR6 rapidly acquired enhanced virulence via conversion of a single nucleotide. This nucleotide change resulted in amino acid substitution F514I in the viral capsid, which led to >10,000-fold higher replication in systemic organs including the brain. Pathogenicity was mediated by enhanced recruitment and infection of intestinal myeloid cells and increased extraintestinal dissemination of virus. Interestingly, the trade-off for this mutation was reduced fitness in an IFN-competent host, in which CR6 bearing F514I exhibited decreased intestinal replication and shedding. In an immunodeficient context, a spontaneous amino acid change can thus convert a relatively avirulent viral strain into a lethal pathogen.  相似文献   

20.
An important component of pathogen evolution at the population level is evolution within hosts. Unless evolution within hosts is very slow compared to the duration of infection, the composition of pathogen genotypes within a host is likely to change during the course of an infection, thus altering the composition of genotypes available for transmission as infection progresses. We develop a nested modeling approach that allows us to follow the evolution of pathogens at the epidemiological level by explicitly considering within‐host evolutionary dynamics of multiple competing strains and the timing of transmission. We use the framework to investigate the impact of short‐sighted within‐host evolution on the evolution of virulence of human immunodeficiency virus (HIV), and find that the topology of the within‐host adaptive landscape determines how virulence evolves at the epidemiological level. If viral reproduction rates increase significantly during the course of infection, the viral population will evolve a high level of virulence even though this will reduce the transmission potential of the virus. However, if reproduction rates increase more modestly, as data suggest, our model predicts that HIV virulence will be only marginally higher than the level that maximizes the transmission potential of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号